Properties

Label 91.2.u.a.88.1
Level $91$
Weight $2$
Character 91.88
Analytic conductor $0.727$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [91,2,Mod(30,91)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("91.30"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(91, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 88.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 91.88
Dual form 91.2.u.a.30.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{2} -1.00000 q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 + 0.866025i) q^{5} +(1.50000 + 0.866025i) q^{6} +(-2.50000 - 0.866025i) q^{7} +1.73205i q^{8} -2.00000 q^{9} +3.00000 q^{10} +5.19615i q^{11} +(-0.500000 - 0.866025i) q^{12} +(-1.00000 - 3.46410i) q^{13} +(3.00000 + 3.46410i) q^{14} +(1.50000 - 0.866025i) q^{15} +(2.50000 - 4.33013i) q^{16} +(-3.00000 - 5.19615i) q^{17} +(3.00000 + 1.73205i) q^{18} -1.73205i q^{19} +(-1.50000 - 0.866025i) q^{20} +(2.50000 + 0.866025i) q^{21} +(4.50000 - 7.79423i) q^{22} -1.73205i q^{24} +(-1.00000 + 1.73205i) q^{25} +(-1.50000 + 6.06218i) q^{26} +5.00000 q^{27} +(-0.500000 - 2.59808i) q^{28} +(-1.50000 - 2.59808i) q^{29} -3.00000 q^{30} +(1.50000 + 0.866025i) q^{31} +(-4.50000 + 2.59808i) q^{32} -5.19615i q^{33} +10.3923i q^{34} +(4.50000 - 0.866025i) q^{35} +(-1.00000 - 1.73205i) q^{36} +(-1.50000 + 2.59808i) q^{38} +(1.00000 + 3.46410i) q^{39} +(-1.50000 - 2.59808i) q^{40} +(-4.50000 + 2.59808i) q^{41} +(-3.00000 - 3.46410i) q^{42} +(-5.50000 + 9.52628i) q^{43} +(-4.50000 + 2.59808i) q^{44} +(3.00000 - 1.73205i) q^{45} +(-7.50000 + 4.33013i) q^{47} +(-2.50000 + 4.33013i) q^{48} +(5.50000 + 4.33013i) q^{49} +(3.00000 - 1.73205i) q^{50} +(3.00000 + 5.19615i) q^{51} +(2.50000 - 2.59808i) q^{52} +(4.50000 - 7.79423i) q^{53} +(-7.50000 - 4.33013i) q^{54} +(-4.50000 - 7.79423i) q^{55} +(1.50000 - 4.33013i) q^{56} +1.73205i q^{57} +5.19615i q^{58} +(-3.00000 + 1.73205i) q^{59} +(1.50000 + 0.866025i) q^{60} +7.00000 q^{61} +(-1.50000 - 2.59808i) q^{62} +(5.00000 + 1.73205i) q^{63} -1.00000 q^{64} +(4.50000 + 4.33013i) q^{65} +(-4.50000 + 7.79423i) q^{66} -8.66025i q^{67} +(3.00000 - 5.19615i) q^{68} +(-7.50000 - 2.59808i) q^{70} +(1.50000 + 0.866025i) q^{71} -3.46410i q^{72} +(-7.50000 - 4.33013i) q^{73} +(1.00000 - 1.73205i) q^{75} +(1.50000 - 0.866025i) q^{76} +(4.50000 - 12.9904i) q^{77} +(1.50000 - 6.06218i) q^{78} +(2.50000 + 4.33013i) q^{79} +8.66025i q^{80} +1.00000 q^{81} +9.00000 q^{82} +3.46410i q^{83} +(0.500000 + 2.59808i) q^{84} +(9.00000 + 5.19615i) q^{85} +(16.5000 - 9.52628i) q^{86} +(1.50000 + 2.59808i) q^{87} -9.00000 q^{88} +(-6.00000 - 3.46410i) q^{89} -6.00000 q^{90} +(-0.500000 + 9.52628i) q^{91} +(-1.50000 - 0.866025i) q^{93} +15.0000 q^{94} +(1.50000 + 2.59808i) q^{95} +(4.50000 - 2.59808i) q^{96} +(-4.50000 - 2.59808i) q^{97} +(-4.50000 - 11.2583i) q^{98} -10.3923i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 3 q^{6} - 5 q^{7} - 4 q^{9} + 6 q^{10} - q^{12} - 2 q^{13} + 6 q^{14} + 3 q^{15} + 5 q^{16} - 6 q^{17} + 6 q^{18} - 3 q^{20} + 5 q^{21} + 9 q^{22} - 2 q^{25}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50000 0.866025i −1.06066 0.612372i −0.135045 0.990839i \(-0.543118\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.50000 + 0.866025i −0.670820 + 0.387298i −0.796387 0.604787i \(-0.793258\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 1.50000 + 0.866025i 0.612372 + 0.353553i
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 1.73205i 0.612372i
\(9\) −2.00000 −0.666667
\(10\) 3.00000 0.948683
\(11\) 5.19615i 1.56670i 0.621582 + 0.783349i \(0.286490\pi\)
−0.621582 + 0.783349i \(0.713510\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −1.00000 3.46410i −0.277350 0.960769i
\(14\) 3.00000 + 3.46410i 0.801784 + 0.925820i
\(15\) 1.50000 0.866025i 0.387298 0.223607i
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 3.00000 + 1.73205i 0.707107 + 0.408248i
\(19\) 1.73205i 0.397360i −0.980064 0.198680i \(-0.936335\pi\)
0.980064 0.198680i \(-0.0636654\pi\)
\(20\) −1.50000 0.866025i −0.335410 0.193649i
\(21\) 2.50000 + 0.866025i 0.545545 + 0.188982i
\(22\) 4.50000 7.79423i 0.959403 1.66174i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 1.73205i 0.353553i
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) −1.50000 + 6.06218i −0.294174 + 1.18889i
\(27\) 5.00000 0.962250
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) −3.00000 −0.547723
\(31\) 1.50000 + 0.866025i 0.269408 + 0.155543i 0.628619 0.777714i \(-0.283621\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −4.50000 + 2.59808i −0.795495 + 0.459279i
\(33\) 5.19615i 0.904534i
\(34\) 10.3923i 1.78227i
\(35\) 4.50000 0.866025i 0.760639 0.146385i
\(36\) −1.00000 1.73205i −0.166667 0.288675i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −1.50000 + 2.59808i −0.243332 + 0.421464i
\(39\) 1.00000 + 3.46410i 0.160128 + 0.554700i
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i \(-0.799657\pi\)
0.105601 + 0.994409i \(0.466323\pi\)
\(42\) −3.00000 3.46410i −0.462910 0.534522i
\(43\) −5.50000 + 9.52628i −0.838742 + 1.45274i 0.0522047 + 0.998636i \(0.483375\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(44\) −4.50000 + 2.59808i −0.678401 + 0.391675i
\(45\) 3.00000 1.73205i 0.447214 0.258199i
\(46\) 0 0
\(47\) −7.50000 + 4.33013i −1.09399 + 0.631614i −0.934635 0.355608i \(-0.884274\pi\)
−0.159352 + 0.987222i \(0.550941\pi\)
\(48\) −2.50000 + 4.33013i −0.360844 + 0.625000i
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 3.00000 1.73205i 0.424264 0.244949i
\(51\) 3.00000 + 5.19615i 0.420084 + 0.727607i
\(52\) 2.50000 2.59808i 0.346688 0.360288i
\(53\) 4.50000 7.79423i 0.618123 1.07062i −0.371706 0.928351i \(-0.621227\pi\)
0.989828 0.142269i \(-0.0454398\pi\)
\(54\) −7.50000 4.33013i −1.02062 0.589256i
\(55\) −4.50000 7.79423i −0.606780 1.05097i
\(56\) 1.50000 4.33013i 0.200446 0.578638i
\(57\) 1.73205i 0.229416i
\(58\) 5.19615i 0.682288i
\(59\) −3.00000 + 1.73205i −0.390567 + 0.225494i −0.682406 0.730974i \(-0.739066\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(60\) 1.50000 + 0.866025i 0.193649 + 0.111803i
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) −1.50000 2.59808i −0.190500 0.329956i
\(63\) 5.00000 + 1.73205i 0.629941 + 0.218218i
\(64\) −1.00000 −0.125000
\(65\) 4.50000 + 4.33013i 0.558156 + 0.537086i
\(66\) −4.50000 + 7.79423i −0.553912 + 0.959403i
\(67\) 8.66025i 1.05802i −0.848616 0.529009i \(-0.822564\pi\)
0.848616 0.529009i \(-0.177436\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) −7.50000 2.59808i −0.896421 0.310530i
\(71\) 1.50000 + 0.866025i 0.178017 + 0.102778i 0.586361 0.810050i \(-0.300560\pi\)
−0.408344 + 0.912828i \(0.633893\pi\)
\(72\) 3.46410i 0.408248i
\(73\) −7.50000 4.33013i −0.877809 0.506803i −0.00787336 0.999969i \(-0.502506\pi\)
−0.869935 + 0.493166i \(0.835840\pi\)
\(74\) 0 0
\(75\) 1.00000 1.73205i 0.115470 0.200000i
\(76\) 1.50000 0.866025i 0.172062 0.0993399i
\(77\) 4.50000 12.9904i 0.512823 1.48039i
\(78\) 1.50000 6.06218i 0.169842 0.686406i
\(79\) 2.50000 + 4.33013i 0.281272 + 0.487177i 0.971698 0.236225i \(-0.0759104\pi\)
−0.690426 + 0.723403i \(0.742577\pi\)
\(80\) 8.66025i 0.968246i
\(81\) 1.00000 0.111111
\(82\) 9.00000 0.993884
\(83\) 3.46410i 0.380235i 0.981761 + 0.190117i \(0.0608868\pi\)
−0.981761 + 0.190117i \(0.939113\pi\)
\(84\) 0.500000 + 2.59808i 0.0545545 + 0.283473i
\(85\) 9.00000 + 5.19615i 0.976187 + 0.563602i
\(86\) 16.5000 9.52628i 1.77924 1.02725i
\(87\) 1.50000 + 2.59808i 0.160817 + 0.278543i
\(88\) −9.00000 −0.959403
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) −6.00000 −0.632456
\(91\) −0.500000 + 9.52628i −0.0524142 + 0.998625i
\(92\) 0 0
\(93\) −1.50000 0.866025i −0.155543 0.0898027i
\(94\) 15.0000 1.54713
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 4.50000 2.59808i 0.459279 0.265165i
\(97\) −4.50000 2.59808i −0.456906 0.263795i 0.253837 0.967247i \(-0.418307\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −4.50000 11.2583i −0.454569 1.13726i
\(99\) 10.3923i 1.04447i
\(100\) −2.00000 −0.200000
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 10.3923i 1.02899i
\(103\) 6.50000 + 11.2583i 0.640464 + 1.10932i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 6.00000 1.73205i 0.588348 0.169842i
\(105\) −4.50000 + 0.866025i −0.439155 + 0.0845154i
\(106\) −13.5000 + 7.79423i −1.31124 + 0.757042i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 2.50000 + 4.33013i 0.240563 + 0.416667i
\(109\) 4.50000 + 2.59808i 0.431022 + 0.248851i 0.699782 0.714357i \(-0.253281\pi\)
−0.268760 + 0.963207i \(0.586614\pi\)
\(110\) 15.5885i 1.48630i
\(111\) 0 0
\(112\) −10.0000 + 8.66025i −0.944911 + 0.818317i
\(113\) −7.50000 + 12.9904i −0.705541 + 1.22203i 0.260955 + 0.965351i \(0.415962\pi\)
−0.966496 + 0.256681i \(0.917371\pi\)
\(114\) 1.50000 2.59808i 0.140488 0.243332i
\(115\) 0 0
\(116\) 1.50000 2.59808i 0.139272 0.241225i
\(117\) 2.00000 + 6.92820i 0.184900 + 0.640513i
\(118\) 6.00000 0.552345
\(119\) 3.00000 + 15.5885i 0.275010 + 1.42899i
\(120\) 1.50000 + 2.59808i 0.136931 + 0.237171i
\(121\) −16.0000 −1.45455
\(122\) −10.5000 6.06218i −0.950625 0.548844i
\(123\) 4.50000 2.59808i 0.405751 0.234261i
\(124\) 1.73205i 0.155543i
\(125\) 12.1244i 1.08444i
\(126\) −6.00000 6.92820i −0.534522 0.617213i
\(127\) −6.50000 11.2583i −0.576782 0.999015i −0.995846 0.0910585i \(-0.970975\pi\)
0.419064 0.907957i \(-0.362358\pi\)
\(128\) 10.5000 + 6.06218i 0.928078 + 0.535826i
\(129\) 5.50000 9.52628i 0.484248 0.838742i
\(130\) −3.00000 10.3923i −0.263117 0.911465i
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 4.50000 2.59808i 0.391675 0.226134i
\(133\) −1.50000 + 4.33013i −0.130066 + 0.375470i
\(134\) −7.50000 + 12.9904i −0.647901 + 1.12220i
\(135\) −7.50000 + 4.33013i −0.645497 + 0.372678i
\(136\) 9.00000 5.19615i 0.771744 0.445566i
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 6.50000 11.2583i 0.551323 0.954919i −0.446857 0.894606i \(-0.647457\pi\)
0.998179 0.0603135i \(-0.0192101\pi\)
\(140\) 3.00000 + 3.46410i 0.253546 + 0.292770i
\(141\) 7.50000 4.33013i 0.631614 0.364662i
\(142\) −1.50000 2.59808i −0.125877 0.218026i
\(143\) 18.0000 5.19615i 1.50524 0.434524i
\(144\) −5.00000 + 8.66025i −0.416667 + 0.721688i
\(145\) 4.50000 + 2.59808i 0.373705 + 0.215758i
\(146\) 7.50000 + 12.9904i 0.620704 + 1.07509i
\(147\) −5.50000 4.33013i −0.453632 0.357143i
\(148\) 0 0
\(149\) 19.0526i 1.56085i −0.625252 0.780423i \(-0.715004\pi\)
0.625252 0.780423i \(-0.284996\pi\)
\(150\) −3.00000 + 1.73205i −0.244949 + 0.141421i
\(151\) −10.5000 6.06218i −0.854478 0.493333i 0.00768132 0.999970i \(-0.497555\pi\)
−0.862159 + 0.506637i \(0.830888\pi\)
\(152\) 3.00000 0.243332
\(153\) 6.00000 + 10.3923i 0.485071 + 0.840168i
\(154\) −18.0000 + 15.5885i −1.45048 + 1.25615i
\(155\) −3.00000 −0.240966
\(156\) −2.50000 + 2.59808i −0.200160 + 0.208013i
\(157\) −11.5000 + 19.9186i −0.917800 + 1.58968i −0.115050 + 0.993360i \(0.536703\pi\)
−0.802749 + 0.596316i \(0.796630\pi\)
\(158\) 8.66025i 0.688973i
\(159\) −4.50000 + 7.79423i −0.356873 + 0.618123i
\(160\) 4.50000 7.79423i 0.355756 0.616188i
\(161\) 0 0
\(162\) −1.50000 0.866025i −0.117851 0.0680414i
\(163\) 12.1244i 0.949653i 0.880079 + 0.474826i \(0.157489\pi\)
−0.880079 + 0.474826i \(0.842511\pi\)
\(164\) −4.50000 2.59808i −0.351391 0.202876i
\(165\) 4.50000 + 7.79423i 0.350325 + 0.606780i
\(166\) 3.00000 5.19615i 0.232845 0.403300i
\(167\) −1.50000 + 0.866025i −0.116073 + 0.0670151i −0.556913 0.830571i \(-0.688014\pi\)
0.440839 + 0.897586i \(0.354681\pi\)
\(168\) −1.50000 + 4.33013i −0.115728 + 0.334077i
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) −9.00000 15.5885i −0.690268 1.19558i
\(171\) 3.46410i 0.264906i
\(172\) −11.0000 −0.838742
\(173\) 15.0000 1.14043 0.570214 0.821496i \(-0.306860\pi\)
0.570214 + 0.821496i \(0.306860\pi\)
\(174\) 5.19615i 0.393919i
\(175\) 4.00000 3.46410i 0.302372 0.261861i
\(176\) 22.5000 + 12.9904i 1.69600 + 0.979187i
\(177\) 3.00000 1.73205i 0.225494 0.130189i
\(178\) 6.00000 + 10.3923i 0.449719 + 0.778936i
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 3.00000 + 1.73205i 0.223607 + 0.129099i
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 9.00000 13.8564i 0.667124 1.02711i
\(183\) −7.00000 −0.517455
\(184\) 0 0
\(185\) 0 0
\(186\) 1.50000 + 2.59808i 0.109985 + 0.190500i
\(187\) 27.0000 15.5885i 1.97444 1.13994i
\(188\) −7.50000 4.33013i −0.546994 0.315807i
\(189\) −12.5000 4.33013i −0.909241 0.314970i
\(190\) 5.19615i 0.376969i
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 1.00000 0.0721688
\(193\) 1.73205i 0.124676i −0.998055 0.0623379i \(-0.980144\pi\)
0.998055 0.0623379i \(-0.0198556\pi\)
\(194\) 4.50000 + 7.79423i 0.323081 + 0.559593i
\(195\) −4.50000 4.33013i −0.322252 0.310087i
\(196\) −1.00000 + 6.92820i −0.0714286 + 0.494872i
\(197\) 19.5000 11.2583i 1.38932 0.802123i 0.396079 0.918216i \(-0.370371\pi\)
0.993238 + 0.116094i \(0.0370372\pi\)
\(198\) −9.00000 + 15.5885i −0.639602 + 1.10782i
\(199\) −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i \(-0.211948\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(200\) −3.00000 1.73205i −0.212132 0.122474i
\(201\) 8.66025i 0.610847i
\(202\) 13.5000 + 7.79423i 0.949857 + 0.548400i
\(203\) 1.50000 + 7.79423i 0.105279 + 0.547048i
\(204\) −3.00000 + 5.19615i −0.210042 + 0.363803i
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 22.5167i 1.56881i
\(207\) 0 0
\(208\) −17.5000 4.33013i −1.21341 0.300240i
\(209\) 9.00000 0.622543
\(210\) 7.50000 + 2.59808i 0.517549 + 0.179284i
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 9.00000 0.618123
\(213\) −1.50000 0.866025i −0.102778 0.0593391i
\(214\) 0 0
\(215\) 19.0526i 1.29937i
\(216\) 8.66025i 0.589256i
\(217\) −3.00000 3.46410i −0.203653 0.235159i
\(218\) −4.50000 7.79423i −0.304778 0.527892i
\(219\) 7.50000 + 4.33013i 0.506803 + 0.292603i
\(220\) 4.50000 7.79423i 0.303390 0.525487i
\(221\) −15.0000 + 15.5885i −1.00901 + 1.04859i
\(222\) 0 0
\(223\) 4.50000 2.59808i 0.301342 0.173980i −0.341703 0.939808i \(-0.611004\pi\)
0.643046 + 0.765828i \(0.277671\pi\)
\(224\) 13.5000 2.59808i 0.902007 0.173591i
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 22.5000 12.9904i 1.49668 0.864107i
\(227\) −15.0000 + 8.66025i −0.995585 + 0.574801i −0.906939 0.421262i \(-0.861587\pi\)
−0.0886460 + 0.996063i \(0.528254\pi\)
\(228\) −1.50000 + 0.866025i −0.0993399 + 0.0573539i
\(229\) 10.5000 6.06218i 0.693860 0.400600i −0.111197 0.993798i \(-0.535468\pi\)
0.805056 + 0.593198i \(0.202135\pi\)
\(230\) 0 0
\(231\) −4.50000 + 12.9904i −0.296078 + 0.854704i
\(232\) 4.50000 2.59808i 0.295439 0.170572i
\(233\) −1.50000 2.59808i −0.0982683 0.170206i 0.812700 0.582683i \(-0.197997\pi\)
−0.910968 + 0.412477i \(0.864664\pi\)
\(234\) 3.00000 12.1244i 0.196116 0.792594i
\(235\) 7.50000 12.9904i 0.489246 0.847399i
\(236\) −3.00000 1.73205i −0.195283 0.112747i
\(237\) −2.50000 4.33013i −0.162392 0.281272i
\(238\) 9.00000 25.9808i 0.583383 1.68408i
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 8.66025i 0.559017i
\(241\) −6.00000 + 3.46410i −0.386494 + 0.223142i −0.680640 0.732618i \(-0.738298\pi\)
0.294146 + 0.955761i \(0.404965\pi\)
\(242\) 24.0000 + 13.8564i 1.54278 + 0.890724i
\(243\) −16.0000 −1.02640
\(244\) 3.50000 + 6.06218i 0.224065 + 0.388091i
\(245\) −12.0000 1.73205i −0.766652 0.110657i
\(246\) −9.00000 −0.573819
\(247\) −6.00000 + 1.73205i −0.381771 + 0.110208i
\(248\) −1.50000 + 2.59808i −0.0952501 + 0.164978i
\(249\) 3.46410i 0.219529i
\(250\) −10.5000 + 18.1865i −0.664078 + 1.15022i
\(251\) −1.50000 + 2.59808i −0.0946792 + 0.163989i −0.909475 0.415759i \(-0.863516\pi\)
0.814795 + 0.579748i \(0.196849\pi\)
\(252\) 1.00000 + 5.19615i 0.0629941 + 0.327327i
\(253\) 0 0
\(254\) 22.5167i 1.41282i
\(255\) −9.00000 5.19615i −0.563602 0.325396i
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −15.0000 + 25.9808i −0.935674 + 1.62064i −0.162247 + 0.986750i \(0.551874\pi\)
−0.773427 + 0.633885i \(0.781459\pi\)
\(258\) −16.5000 + 9.52628i −1.02725 + 0.593080i
\(259\) 0 0
\(260\) −1.50000 + 6.06218i −0.0930261 + 0.375960i
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 25.9808i 1.60510i
\(263\) 3.00000 0.184988 0.0924940 0.995713i \(-0.470516\pi\)
0.0924940 + 0.995713i \(0.470516\pi\)
\(264\) 9.00000 0.553912
\(265\) 15.5885i 0.957591i
\(266\) 6.00000 5.19615i 0.367884 0.318597i
\(267\) 6.00000 + 3.46410i 0.367194 + 0.212000i
\(268\) 7.50000 4.33013i 0.458135 0.264505i
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 15.0000 0.912871
\(271\) −15.0000 8.66025i −0.911185 0.526073i −0.0303728 0.999539i \(-0.509669\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) −30.0000 −1.81902
\(273\) 0.500000 9.52628i 0.0302614 0.576557i
\(274\) 0 0
\(275\) −9.00000 5.19615i −0.542720 0.313340i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) −19.5000 + 11.2583i −1.16953 + 0.675230i
\(279\) −3.00000 1.73205i −0.179605 0.103695i
\(280\) 1.50000 + 7.79423i 0.0896421 + 0.465794i
\(281\) 6.92820i 0.413302i −0.978415 0.206651i \(-0.933744\pi\)
0.978415 0.206651i \(-0.0662565\pi\)
\(282\) −15.0000 −0.893237
\(283\) 19.0000 1.12943 0.564716 0.825285i \(-0.308986\pi\)
0.564716 + 0.825285i \(0.308986\pi\)
\(284\) 1.73205i 0.102778i
\(285\) −1.50000 2.59808i −0.0888523 0.153897i
\(286\) −31.5000 7.79423i −1.86263 0.460882i
\(287\) 13.5000 2.59808i 0.796880 0.153360i
\(288\) 9.00000 5.19615i 0.530330 0.306186i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) 4.50000 + 2.59808i 0.263795 + 0.152302i
\(292\) 8.66025i 0.506803i
\(293\) −22.5000 12.9904i −1.31446 0.758906i −0.331632 0.943409i \(-0.607599\pi\)
−0.982832 + 0.184503i \(0.940933\pi\)
\(294\) 4.50000 + 11.2583i 0.262445 + 0.656599i
\(295\) 3.00000 5.19615i 0.174667 0.302532i
\(296\) 0 0
\(297\) 25.9808i 1.50756i
\(298\) −16.5000 + 28.5788i −0.955819 + 1.65553i
\(299\) 0 0
\(300\) 2.00000 0.115470
\(301\) 22.0000 19.0526i 1.26806 1.09817i
\(302\) 10.5000 + 18.1865i 0.604207 + 1.04652i
\(303\) 9.00000 0.517036
\(304\) −7.50000 4.33013i −0.430155 0.248350i
\(305\) −10.5000 + 6.06218i −0.601228 + 0.347119i
\(306\) 20.7846i 1.18818i
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) 13.5000 2.59808i 0.769234 0.148039i
\(309\) −6.50000 11.2583i −0.369772 0.640464i
\(310\) 4.50000 + 2.59808i 0.255583 + 0.147561i
\(311\) 7.50000 12.9904i 0.425286 0.736617i −0.571161 0.820838i \(-0.693507\pi\)
0.996447 + 0.0842210i \(0.0268402\pi\)
\(312\) −6.00000 + 1.73205i −0.339683 + 0.0980581i
\(313\) −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i \(-0.986235\pi\)
0.462093 0.886831i \(-0.347098\pi\)
\(314\) 34.5000 19.9186i 1.94695 1.12407i
\(315\) −9.00000 + 1.73205i −0.507093 + 0.0975900i
\(316\) −2.50000 + 4.33013i −0.140636 + 0.243589i
\(317\) 4.50000 2.59808i 0.252745 0.145922i −0.368275 0.929717i \(-0.620052\pi\)
0.621021 + 0.783794i \(0.286718\pi\)
\(318\) 13.5000 7.79423i 0.757042 0.437079i
\(319\) 13.5000 7.79423i 0.755855 0.436393i
\(320\) 1.50000 0.866025i 0.0838525 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) −9.00000 + 5.19615i −0.500773 + 0.289122i
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 7.00000 + 1.73205i 0.388290 + 0.0960769i
\(326\) 10.5000 18.1865i 0.581541 1.00726i
\(327\) −4.50000 2.59808i −0.248851 0.143674i
\(328\) −4.50000 7.79423i −0.248471 0.430364i
\(329\) 22.5000 4.33013i 1.24047 0.238728i
\(330\) 15.5885i 0.858116i
\(331\) 32.9090i 1.80884i 0.426643 + 0.904420i \(0.359696\pi\)
−0.426643 + 0.904420i \(0.640304\pi\)
\(332\) −3.00000 + 1.73205i −0.164646 + 0.0950586i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) 7.50000 + 12.9904i 0.409769 + 0.709740i
\(336\) 10.0000 8.66025i 0.545545 0.472456i
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 22.5000 0.866025i 1.22384 0.0471056i
\(339\) 7.50000 12.9904i 0.407344 0.705541i
\(340\) 10.3923i 0.563602i
\(341\) −4.50000 + 7.79423i −0.243689 + 0.422081i
\(342\) 3.00000 5.19615i 0.162221 0.280976i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −16.5000 9.52628i −0.889620 0.513623i
\(345\) 0 0
\(346\) −22.5000 12.9904i −1.20961 0.698367i
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) −1.50000 + 2.59808i −0.0804084 + 0.139272i
\(349\) −4.50000 + 2.59808i −0.240879 + 0.139072i −0.615581 0.788074i \(-0.711079\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) −9.00000 + 1.73205i −0.481070 + 0.0925820i
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) −13.5000 23.3827i −0.719552 1.24630i
\(353\) 1.73205i 0.0921878i −0.998937 0.0460939i \(-0.985323\pi\)
0.998937 0.0460939i \(-0.0146773\pi\)
\(354\) −6.00000 −0.318896
\(355\) −3.00000 −0.159223
\(356\) 6.92820i 0.367194i
\(357\) −3.00000 15.5885i −0.158777 0.825029i
\(358\) −4.50000 2.59808i −0.237832 0.137313i
\(359\) 16.5000 9.52628i 0.870837 0.502778i 0.00321050 0.999995i \(-0.498978\pi\)
0.867626 + 0.497217i \(0.165645\pi\)
\(360\) 3.00000 + 5.19615i 0.158114 + 0.273861i
\(361\) 16.0000 0.842105
\(362\) −3.00000 1.73205i −0.157676 0.0910346i
\(363\) 16.0000 0.839782
\(364\) −8.50000 + 4.33013i −0.445521 + 0.226960i
\(365\) 15.0000 0.785136
\(366\) 10.5000 + 6.06218i 0.548844 + 0.316875i
\(367\) 23.0000 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(368\) 0 0
\(369\) 9.00000 5.19615i 0.468521 0.270501i
\(370\) 0 0
\(371\) −18.0000 + 15.5885i −0.934513 + 0.809312i
\(372\) 1.73205i 0.0898027i
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) −54.0000 −2.79227
\(375\) 12.1244i 0.626099i
\(376\) −7.50000 12.9904i −0.386783 0.669928i
\(377\) −7.50000 + 7.79423i −0.386270 + 0.401423i
\(378\) 15.0000 + 17.3205i 0.771517 + 0.890871i
\(379\) −1.50000 + 0.866025i −0.0770498 + 0.0444847i −0.538030 0.842926i \(-0.680831\pi\)
0.460980 + 0.887410i \(0.347498\pi\)
\(380\) −1.50000 + 2.59808i −0.0769484 + 0.133278i
\(381\) 6.50000 + 11.2583i 0.333005 + 0.576782i
\(382\) 22.5000 + 12.9904i 1.15120 + 0.664646i
\(383\) 15.5885i 0.796533i −0.917270 0.398266i \(-0.869612\pi\)
0.917270 0.398266i \(-0.130388\pi\)
\(384\) −10.5000 6.06218i −0.535826 0.309359i
\(385\) 4.50000 + 23.3827i 0.229341 + 1.19169i
\(386\) −1.50000 + 2.59808i −0.0763480 + 0.132239i
\(387\) 11.0000 19.0526i 0.559161 0.968496i
\(388\) 5.19615i 0.263795i
\(389\) −1.50000 + 2.59808i −0.0760530 + 0.131728i −0.901544 0.432688i \(-0.857565\pi\)
0.825491 + 0.564416i \(0.190898\pi\)
\(390\) 3.00000 + 10.3923i 0.151911 + 0.526235i
\(391\) 0 0
\(392\) −7.50000 + 9.52628i −0.378807 + 0.481150i
\(393\) 7.50000 + 12.9904i 0.378325 + 0.655278i
\(394\) −39.0000 −1.96479
\(395\) −7.50000 4.33013i −0.377366 0.217872i
\(396\) 9.00000 5.19615i 0.452267 0.261116i
\(397\) 36.3731i 1.82551i 0.408505 + 0.912756i \(0.366050\pi\)
−0.408505 + 0.912756i \(0.633950\pi\)
\(398\) 6.92820i 0.347279i
\(399\) 1.50000 4.33013i 0.0750939 0.216777i
\(400\) 5.00000 + 8.66025i 0.250000 + 0.433013i
\(401\) −6.00000 3.46410i −0.299626 0.172989i 0.342649 0.939463i \(-0.388676\pi\)
−0.642275 + 0.766475i \(0.722009\pi\)
\(402\) 7.50000 12.9904i 0.374066 0.647901i
\(403\) 1.50000 6.06218i 0.0747203 0.301979i
\(404\) −4.50000 7.79423i −0.223883 0.387777i
\(405\) −1.50000 + 0.866025i −0.0745356 + 0.0430331i
\(406\) 4.50000 12.9904i 0.223331 0.644702i
\(407\) 0 0
\(408\) −9.00000 + 5.19615i −0.445566 + 0.257248i
\(409\) 6.00000 3.46410i 0.296681 0.171289i −0.344270 0.938871i \(-0.611874\pi\)
0.640951 + 0.767582i \(0.278540\pi\)
\(410\) −13.5000 + 7.79423i −0.666717 + 0.384930i
\(411\) 0 0
\(412\) −6.50000 + 11.2583i −0.320232 + 0.554658i
\(413\) 9.00000 1.73205i 0.442861 0.0852286i
\(414\) 0 0
\(415\) −3.00000 5.19615i −0.147264 0.255069i
\(416\) 13.5000 + 12.9904i 0.661892 + 0.636906i
\(417\) −6.50000 + 11.2583i −0.318306 + 0.551323i
\(418\) −13.5000 7.79423i −0.660307 0.381228i
\(419\) −10.5000 18.1865i −0.512959 0.888470i −0.999887 0.0150285i \(-0.995216\pi\)
0.486928 0.873442i \(-0.338117\pi\)
\(420\) −3.00000 3.46410i −0.146385 0.169031i
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 22.5167i 1.09609i
\(423\) 15.0000 8.66025i 0.729325 0.421076i
\(424\) 13.5000 + 7.79423i 0.655618 + 0.378521i
\(425\) 12.0000 0.582086
\(426\) 1.50000 + 2.59808i 0.0726752 + 0.125877i
\(427\) −17.5000 6.06218i −0.846884 0.293369i
\(428\) 0 0
\(429\) −18.0000 + 5.19615i −0.869048 + 0.250873i
\(430\) −16.5000 + 28.5788i −0.795701 + 1.37819i
\(431\) 32.9090i 1.58517i 0.609762 + 0.792585i \(0.291265\pi\)
−0.609762 + 0.792585i \(0.708735\pi\)
\(432\) 12.5000 21.6506i 0.601407 1.04167i
\(433\) −9.50000 + 16.4545i −0.456541 + 0.790752i −0.998775 0.0494752i \(-0.984245\pi\)
0.542234 + 0.840227i \(0.317578\pi\)
\(434\) 1.50000 + 7.79423i 0.0720023 + 0.374135i
\(435\) −4.50000 2.59808i −0.215758 0.124568i
\(436\) 5.19615i 0.248851i
\(437\) 0 0
\(438\) −7.50000 12.9904i −0.358364 0.620704i
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 13.5000 7.79423i 0.643587 0.371575i
\(441\) −11.0000 8.66025i −0.523810 0.412393i
\(442\) 36.0000 10.3923i 1.71235 0.494312i
\(443\) −7.50000 12.9904i −0.356336 0.617192i 0.631010 0.775775i \(-0.282641\pi\)
−0.987346 + 0.158583i \(0.949307\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) −9.00000 −0.426162
\(447\) 19.0526i 0.901155i
\(448\) 2.50000 + 0.866025i 0.118114 + 0.0409159i
\(449\) 1.50000 + 0.866025i 0.0707894 + 0.0408703i 0.534977 0.844867i \(-0.320320\pi\)
−0.464188 + 0.885737i \(0.653654\pi\)
\(450\) −6.00000 + 3.46410i −0.282843 + 0.163299i
\(451\) −13.5000 23.3827i −0.635690 1.10105i
\(452\) −15.0000 −0.705541
\(453\) 10.5000 + 6.06218i 0.493333 + 0.284826i
\(454\) 30.0000 1.40797
\(455\) −7.50000 14.7224i −0.351605 0.690198i
\(456\) −3.00000 −0.140488
\(457\) −30.0000 17.3205i −1.40334 0.810219i −0.408607 0.912710i \(-0.633985\pi\)
−0.994734 + 0.102491i \(0.967319\pi\)
\(458\) −21.0000 −0.981266
\(459\) −15.0000 25.9808i −0.700140 1.21268i
\(460\) 0 0
\(461\) 25.5000 + 14.7224i 1.18765 + 0.685692i 0.957773 0.287527i \(-0.0928330\pi\)
0.229881 + 0.973219i \(0.426166\pi\)
\(462\) 18.0000 15.5885i 0.837436 0.725241i
\(463\) 24.2487i 1.12693i −0.826139 0.563467i \(-0.809467\pi\)
0.826139 0.563467i \(-0.190533\pi\)
\(464\) −15.0000 −0.696358
\(465\) 3.00000 0.139122
\(466\) 5.19615i 0.240707i
\(467\) 10.5000 + 18.1865i 0.485882 + 0.841572i 0.999868 0.0162260i \(-0.00516512\pi\)
−0.513986 + 0.857798i \(0.671832\pi\)
\(468\) −5.00000 + 5.19615i −0.231125 + 0.240192i
\(469\) −7.50000 + 21.6506i −0.346318 + 0.999733i
\(470\) −22.5000 + 12.9904i −1.03785 + 0.599202i
\(471\) 11.5000 19.9186i 0.529892 0.917800i
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) −49.5000 28.5788i −2.27601 1.31406i
\(474\) 8.66025i 0.397779i
\(475\) 3.00000 + 1.73205i 0.137649 + 0.0794719i
\(476\) −12.0000 + 10.3923i −0.550019 + 0.476331i
\(477\) −9.00000 + 15.5885i −0.412082 + 0.713746i
\(478\) 9.00000 15.5885i 0.411650 0.712999i
\(479\) 29.4449i 1.34537i −0.739929 0.672685i \(-0.765141\pi\)
0.739929 0.672685i \(-0.234859\pi\)
\(480\) −4.50000 + 7.79423i −0.205396 + 0.355756i
\(481\) 0 0
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) −8.00000 13.8564i −0.363636 0.629837i
\(485\) 9.00000 0.408669
\(486\) 24.0000 + 13.8564i 1.08866 + 0.628539i
\(487\) −21.0000 + 12.1244i −0.951601 + 0.549407i −0.893578 0.448908i \(-0.851813\pi\)
−0.0580230 + 0.998315i \(0.518480\pi\)
\(488\) 12.1244i 0.548844i
\(489\) 12.1244i 0.548282i
\(490\) 16.5000 + 12.9904i 0.745394 + 0.586846i
\(491\) 13.5000 + 23.3827i 0.609246 + 1.05525i 0.991365 + 0.131132i \(0.0418613\pi\)
−0.382118 + 0.924113i \(0.624805\pi\)
\(492\) 4.50000 + 2.59808i 0.202876 + 0.117130i
\(493\) −9.00000 + 15.5885i −0.405340 + 0.702069i
\(494\) 10.5000 + 2.59808i 0.472417 + 0.116893i
\(495\) 9.00000 + 15.5885i 0.404520 + 0.700649i
\(496\) 7.50000 4.33013i 0.336760 0.194428i
\(497\) −3.00000 3.46410i −0.134568 0.155386i
\(498\) −3.00000 + 5.19615i −0.134433 + 0.232845i
\(499\) −1.50000 + 0.866025i −0.0671492 + 0.0387686i −0.533199 0.845990i \(-0.679010\pi\)
0.466049 + 0.884759i \(0.345677\pi\)
\(500\) 10.5000 6.06218i 0.469574 0.271109i
\(501\) 1.50000 0.866025i 0.0670151 0.0386912i
\(502\) 4.50000 2.59808i 0.200845 0.115958i
\(503\) 4.50000 7.79423i 0.200645 0.347527i −0.748091 0.663596i \(-0.769030\pi\)
0.948736 + 0.316068i \(0.102363\pi\)
\(504\) −3.00000 + 8.66025i −0.133631 + 0.385758i
\(505\) 13.5000 7.79423i 0.600742 0.346839i
\(506\) 0 0
\(507\) 11.0000 6.92820i 0.488527 0.307692i
\(508\) 6.50000 11.2583i 0.288391 0.499508i
\(509\) −6.00000 3.46410i −0.265945 0.153544i 0.361098 0.932528i \(-0.382402\pi\)
−0.627044 + 0.778984i \(0.715735\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) 15.0000 + 17.3205i 0.663561 + 0.766214i
\(512\) 8.66025i 0.382733i
\(513\) 8.66025i 0.382360i
\(514\) 45.0000 25.9808i 1.98486 1.14596i
\(515\) −19.5000 11.2583i −0.859273 0.496101i
\(516\) 11.0000 0.484248
\(517\) −22.5000 38.9711i −0.989549 1.71395i
\(518\) 0 0
\(519\) −15.0000 −0.658427
\(520\) −7.50000 + 7.79423i −0.328897 + 0.341800i
\(521\) −19.5000 + 33.7750i −0.854311 + 1.47971i 0.0229727 + 0.999736i \(0.492687\pi\)
−0.877283 + 0.479973i \(0.840646\pi\)
\(522\) 10.3923i 0.454859i
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) 7.50000 12.9904i 0.327639 0.567487i
\(525\) −4.00000 + 3.46410i −0.174574 + 0.151186i
\(526\) −4.50000 2.59808i −0.196209 0.113282i
\(527\) 10.3923i 0.452696i
\(528\) −22.5000 12.9904i −0.979187 0.565334i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 13.5000 23.3827i 0.586403 1.01568i
\(531\) 6.00000 3.46410i 0.260378 0.150329i
\(532\) −4.50000 + 0.866025i −0.195100 + 0.0375470i
\(533\) 13.5000 + 12.9904i 0.584750 + 0.562676i
\(534\) −6.00000 10.3923i −0.259645 0.449719i
\(535\) 0 0
\(536\) 15.0000 0.647901
\(537\) −3.00000 −0.129460
\(538\) 10.3923i 0.448044i
\(539\) −22.5000 + 28.5788i −0.969144 + 1.23098i
\(540\) −7.50000 4.33013i −0.322749 0.186339i
\(541\) 10.5000 6.06218i 0.451430 0.260633i −0.257004 0.966410i \(-0.582735\pi\)
0.708434 + 0.705777i \(0.249402\pi\)
\(542\) 15.0000 + 25.9808i 0.644305 + 1.11597i
\(543\) −2.00000 −0.0858282
\(544\) 27.0000 + 15.5885i 1.15762 + 0.668350i
\(545\) −9.00000 −0.385518
\(546\) −9.00000 + 13.8564i −0.385164 + 0.592999i
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) −14.0000 −0.597505
\(550\) 9.00000 + 15.5885i 0.383761 + 0.664694i
\(551\) −4.50000 + 2.59808i −0.191706 + 0.110682i
\(552\) 0 0
\(553\) −2.50000 12.9904i −0.106311 0.552407i
\(554\) 17.3205i 0.735878i
\(555\) 0 0
\(556\) 13.0000 0.551323
\(557\) 15.5885i 0.660504i −0.943893 0.330252i \(-0.892866\pi\)
0.943893 0.330252i \(-0.107134\pi\)
\(558\) 3.00000 + 5.19615i 0.127000 + 0.219971i
\(559\) 38.5000 + 9.52628i 1.62838 + 0.402919i
\(560\) 7.50000 21.6506i 0.316933 0.914906i
\(561\) −27.0000 + 15.5885i −1.13994 + 0.658145i
\(562\) −6.00000 + 10.3923i −0.253095 + 0.438373i
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) 7.50000 + 4.33013i 0.315807 + 0.182331i
\(565\) 25.9808i 1.09302i
\(566\) −28.5000 16.4545i −1.19794 0.691633i
\(567\) −2.50000 0.866025i −0.104990 0.0363696i
\(568\) −1.50000 + 2.59808i −0.0629386 + 0.109013i
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 5.19615i 0.217643i
\(571\) 11.5000 19.9186i 0.481260 0.833567i −0.518509 0.855072i \(-0.673513\pi\)
0.999769 + 0.0215055i \(0.00684595\pi\)
\(572\) 13.5000 + 12.9904i 0.564463 + 0.543155i
\(573\) 15.0000 0.626634
\(574\) −22.5000 7.79423i −0.939132 0.325325i
\(575\) 0 0
\(576\) 2.00000 0.0833333
\(577\) −13.5000 7.79423i −0.562012 0.324478i 0.191940 0.981407i \(-0.438522\pi\)
−0.753953 + 0.656929i \(0.771855\pi\)
\(578\) 28.5000 16.4545i 1.18544 0.684416i
\(579\) 1.73205i 0.0719816i
\(580\) 5.19615i 0.215758i
\(581\) 3.00000 8.66025i 0.124461 0.359288i
\(582\) −4.50000 7.79423i −0.186531 0.323081i
\(583\) 40.5000 + 23.3827i 1.67734 + 0.968412i
\(584\) 7.50000 12.9904i 0.310352 0.537546i
\(585\) −9.00000 8.66025i −0.372104 0.358057i
\(586\) 22.5000 + 38.9711i 0.929466 + 1.60988i
\(587\) −13.5000 + 7.79423i −0.557205 + 0.321702i −0.752023 0.659137i \(-0.770922\pi\)
0.194818 + 0.980839i \(0.437588\pi\)
\(588\) 1.00000 6.92820i 0.0412393 0.285714i
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) −9.00000 + 5.19615i −0.370524 + 0.213922i
\(591\) −19.5000 + 11.2583i −0.802123 + 0.463106i
\(592\) 0 0
\(593\) 4.50000 2.59808i 0.184793 0.106690i −0.404750 0.914428i \(-0.632641\pi\)
0.589543 + 0.807737i \(0.299308\pi\)
\(594\) 22.5000 38.9711i 0.923186 1.59901i
\(595\) −18.0000 20.7846i −0.737928 0.852086i
\(596\) 16.5000 9.52628i 0.675866 0.390212i
\(597\) 2.00000 + 3.46410i 0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −4.50000 + 7.79423i −0.183865 + 0.318464i −0.943193 0.332244i \(-0.892194\pi\)
0.759328 + 0.650708i \(0.225528\pi\)
\(600\) 3.00000 + 1.73205i 0.122474 + 0.0707107i
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) −49.5000 + 9.52628i −2.01747 + 0.388262i
\(603\) 17.3205i 0.705346i
\(604\) 12.1244i 0.493333i
\(605\) 24.0000 13.8564i 0.975739 0.563343i
\(606\) −13.5000 7.79423i −0.548400 0.316619i
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) 4.50000 + 7.79423i 0.182499 + 0.316098i
\(609\) −1.50000 7.79423i −0.0607831 0.315838i
\(610\) 21.0000 0.850265
\(611\) 22.5000 + 21.6506i 0.910253 + 0.875891i
\(612\) −6.00000 + 10.3923i −0.242536 + 0.420084i
\(613\) 36.3731i 1.46909i −0.678558 0.734547i \(-0.737395\pi\)
0.678558 0.734547i \(-0.262605\pi\)
\(614\) 21.0000 36.3731i 0.847491 1.46790i
\(615\) −4.50000 + 7.79423i −0.181458 + 0.314294i
\(616\) 22.5000 + 7.79423i 0.906551 + 0.314038i
\(617\) 37.5000 + 21.6506i 1.50969 + 0.871622i 0.999936 + 0.0113033i \(0.00359804\pi\)
0.509757 + 0.860318i \(0.329735\pi\)
\(618\) 22.5167i 0.905753i
\(619\) −16.5000 9.52628i −0.663191 0.382893i 0.130301 0.991475i \(-0.458406\pi\)
−0.793492 + 0.608581i \(0.791739\pi\)
\(620\) −1.50000 2.59808i −0.0602414 0.104341i
\(621\) 0 0
\(622\) −22.5000 + 12.9904i −0.902168 + 0.520867i
\(623\) 12.0000 + 13.8564i 0.480770 + 0.555145i
\(624\) 17.5000 + 4.33013i 0.700561 + 0.173344i
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 32.9090i 1.31531i
\(627\) −9.00000 −0.359425
\(628\) −23.0000 −0.917800
\(629\) 0 0
\(630\) 15.0000 + 5.19615i 0.597614 + 0.207020i
\(631\) −40.5000 23.3827i −1.61228 0.930850i −0.988841 0.148978i \(-0.952402\pi\)
−0.623439 0.781872i \(-0.714265\pi\)
\(632\) −7.50000 + 4.33013i −0.298334 + 0.172243i
\(633\) 6.50000 + 11.2583i 0.258352 + 0.447478i
\(634\) −9.00000 −0.357436
\(635\) 19.5000 + 11.2583i 0.773834 + 0.446773i
\(636\) −9.00000 −0.356873
\(637\) 9.50000 23.3827i 0.376404 0.926456i
\(638\) −27.0000 −1.06894
\(639\) −3.00000 1.73205i −0.118678 0.0685189i
\(640\) −21.0000 −0.830098
\(641\) −15.0000 25.9808i −0.592464 1.02618i −0.993899 0.110291i \(-0.964822\pi\)
0.401435 0.915888i \(-0.368512\pi\)
\(642\) 0 0
\(643\) −4.50000 2.59808i −0.177463 0.102458i 0.408637 0.912697i \(-0.366004\pi\)
−0.586100 + 0.810239i \(0.699337\pi\)
\(644\) 0 0
\(645\) 19.0526i 0.750194i
\(646\) 18.0000 0.708201
\(647\) −9.00000 −0.353827 −0.176913 0.984226i \(-0.556611\pi\)
−0.176913 + 0.984226i \(0.556611\pi\)
\(648\) 1.73205i 0.0680414i
\(649\) −9.00000 15.5885i −0.353281 0.611900i
\(650\) −9.00000 8.66025i −0.353009 0.339683i
\(651\) 3.00000 + 3.46410i 0.117579 + 0.135769i
\(652\) −10.5000 + 6.06218i −0.411212 + 0.237413i
\(653\) 15.0000 25.9808i 0.586995 1.01671i −0.407628 0.913148i \(-0.633644\pi\)
0.994623 0.103558i \(-0.0330227\pi\)
\(654\) 4.50000 + 7.79423i 0.175964 + 0.304778i
\(655\) 22.5000 + 12.9904i 0.879148 + 0.507576i
\(656\) 25.9808i 1.01438i
\(657\) 15.0000 + 8.66025i 0.585206 + 0.337869i
\(658\) −37.5000 12.9904i −1.46190 0.506418i
\(659\) −7.50000 + 12.9904i −0.292159 + 0.506033i −0.974320 0.225168i \(-0.927707\pi\)
0.682161 + 0.731202i \(0.261040\pi\)
\(660\) −4.50000 + 7.79423i −0.175162 + 0.303390i
\(661\) 36.3731i 1.41475i −0.706839 0.707374i \(-0.749880\pi\)
0.706839 0.707374i \(-0.250120\pi\)
\(662\) 28.5000 49.3634i 1.10768 1.91856i
\(663\) 15.0000 15.5885i 0.582552 0.605406i
\(664\) −6.00000 −0.232845
\(665\) −1.50000 7.79423i −0.0581675 0.302247i
\(666\) 0 0
\(667\) 0 0
\(668\) −1.50000 0.866025i −0.0580367 0.0335075i
\(669\) −4.50000 + 2.59808i −0.173980 + 0.100447i
\(670\) 25.9808i 1.00372i
\(671\) 36.3731i 1.40417i
\(672\) −13.5000 + 2.59808i −0.520774 + 0.100223i
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) −33.0000 19.0526i −1.27111 0.733877i
\(675\) −5.00000 + 8.66025i −0.192450 + 0.333333i
\(676\) −11.5000 6.06218i −0.442308 0.233161i
\(677\) −13.5000 23.3827i −0.518847 0.898670i −0.999760 0.0219013i \(-0.993028\pi\)
0.480913 0.876768i \(-0.340305\pi\)
\(678\) −22.5000 + 12.9904i −0.864107 + 0.498893i
\(679\) 9.00000 + 10.3923i 0.345388 + 0.398820i
\(680\) −9.00000 + 15.5885i −0.345134 + 0.597790i
\(681\) 15.0000 8.66025i 0.574801 0.331862i
\(682\) 13.5000 7.79423i 0.516942 0.298456i
\(683\) 21.0000 12.1244i 0.803543 0.463926i −0.0411658 0.999152i \(-0.513107\pi\)
0.844708 + 0.535227i \(0.179774\pi\)
\(684\) −3.00000 + 1.73205i −0.114708 + 0.0662266i
\(685\) 0 0
\(686\) 1.50000 + 32.0429i 0.0572703 + 1.22341i
\(687\) −10.5000 + 6.06218i −0.400600 + 0.231287i
\(688\) 27.5000 + 47.6314i 1.04843 + 1.81593i
\(689\) −31.5000 7.79423i −1.20005 0.296936i
\(690\) 0 0
\(691\) 27.0000 + 15.5885i 1.02713 + 0.593013i 0.916161 0.400811i \(-0.131272\pi\)
0.110968 + 0.993824i \(0.464605\pi\)
\(692\) 7.50000 + 12.9904i 0.285107 + 0.493820i
\(693\) −9.00000 + 25.9808i −0.341882 + 0.986928i
\(694\) 0 0
\(695\) 22.5167i 0.854106i
\(696\) −4.50000 + 2.59808i −0.170572 + 0.0984798i
\(697\) 27.0000 + 15.5885i 1.02270 + 0.590455i
\(698\) 9.00000 0.340655
\(699\) 1.50000 + 2.59808i 0.0567352 + 0.0982683i
\(700\) 5.00000 + 1.73205i 0.188982 + 0.0654654i
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) −7.50000 + 30.3109i −0.283069 + 1.14401i
\(703\) 0 0
\(704\) 5.19615i 0.195837i
\(705\) −7.50000 + 12.9904i −0.282466 + 0.489246i
\(706\) −1.50000 + 2.59808i −0.0564532 + 0.0977799i
\(707\) 22.5000 + 7.79423i 0.846200 + 0.293132i
\(708\) 3.00000 + 1.73205i 0.112747 + 0.0650945i
\(709\) 12.1244i 0.455340i −0.973738 0.227670i \(-0.926889\pi\)
0.973738 0.227670i \(-0.0731107\pi\)
\(710\) 4.50000 + 2.59808i 0.168882 + 0.0975041i
\(711\) −5.00000 8.66025i −0.187515 0.324785i
\(712\) 6.00000 10.3923i 0.224860 0.389468i
\(713\) 0 0
\(714\) −9.00000 + 25.9808i −0.336817 + 0.972306i
\(715\) −22.5000 + 23.3827i −0.841452 + 0.874463i
\(716\) 1.50000 + 2.59808i 0.0560576 + 0.0970947i
\(717\) 10.3923i 0.388108i
\(718\) −33.0000 −1.23155
\(719\) −15.0000 −0.559406 −0.279703 0.960087i \(-0.590236\pi\)
−0.279703 + 0.960087i \(0.590236\pi\)
\(720\) 17.3205i 0.645497i
\(721\) −6.50000 33.7750i −0.242073 1.25785i
\(722\) −24.0000 13.8564i −0.893188 0.515682i
\(723\) 6.00000 3.46410i 0.223142 0.128831i
\(724\) 1.00000 + 1.73205i 0.0371647 + 0.0643712i
\(725\) 6.00000 0.222834
\(726\) −24.0000 13.8564i −0.890724 0.514259i
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) −16.5000 0.866025i −0.611531 0.0320970i
\(729\) 13.0000 0.481481
\(730\) −22.5000 12.9904i −0.832762 0.480796i
\(731\) 66.0000 2.44110
\(732\) −3.50000 6.06218i −0.129364 0.224065i
\(733\) −43.5000 + 25.1147i −1.60671 + 0.927634i −0.616609 + 0.787269i \(0.711494\pi\)
−0.990100 + 0.140365i \(0.955173\pi\)
\(734\) −34.5000 19.9186i −1.27342 0.735208i
\(735\) 12.0000 + 1.73205i 0.442627 + 0.0638877i
\(736\) 0 0
\(737\) 45.0000 1.65760
\(738\) −18.0000 −0.662589
\(739\) 39.8372i 1.46543i 0.680534 + 0.732717i \(0.261748\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) 6.00000 1.73205i 0.220416 0.0636285i
\(742\) 40.5000 7.79423i 1.48680 0.286135i
\(743\) −1.50000 + 0.866025i −0.0550297 + 0.0317714i −0.527262 0.849703i \(-0.676782\pi\)
0.472233 + 0.881474i \(0.343448\pi\)
\(744\) 1.50000 2.59808i 0.0549927 0.0952501i
\(745\) 16.5000 + 28.5788i 0.604513 + 1.04705i
\(746\) −28.5000 16.4545i −1.04346 0.602441i
\(747\) 6.92820i 0.253490i
\(748\) 27.0000 + 15.5885i 0.987218 + 0.569970i
\(749\) 0 0
\(750\) 10.5000 18.1865i 0.383406 0.664078i
\(751\) −10.0000 + 17.3205i −0.364905 + 0.632034i −0.988761 0.149505i \(-0.952232\pi\)
0.623856 + 0.781540i \(0.285565\pi\)
\(752\) 43.3013i 1.57903i
\(753\) 1.50000 2.59808i 0.0546630 0.0946792i
\(754\) 18.0000 5.19615i 0.655521 0.189233i
\(755\) 21.0000 0.764268
\(756\) −2.50000 12.9904i −0.0909241 0.472456i
\(757\) 8.50000 + 14.7224i 0.308938 + 0.535096i 0.978130 0.207993i \(-0.0666932\pi\)
−0.669193 + 0.743089i \(0.733360\pi\)
\(758\) 3.00000 0.108965
\(759\) 0 0
\(760\) −4.50000 + 2.59808i −0.163232 + 0.0942421i
\(761\) 29.4449i 1.06738i 0.845682 + 0.533688i \(0.179194\pi\)
−0.845682 + 0.533688i \(0.820806\pi\)
\(762\) 22.5167i 0.815693i
\(763\) −9.00000 10.3923i −0.325822 0.376227i
\(764\) −7.50000 12.9904i −0.271340 0.469975i
\(765\) −18.0000 10.3923i −0.650791 0.375735i
\(766\) −13.5000 + 23.3827i −0.487775 + 0.844851i
\(767\) 9.00000 + 8.66025i 0.324971 + 0.312704i
\(768\) 9.50000 + 16.4545i 0.342802 + 0.593750i
\(769\) −16.5000 + 9.52628i −0.595005 + 0.343526i −0.767074 0.641558i \(-0.778288\pi\)
0.172069 + 0.985085i \(0.444955\pi\)
\(770\) 13.5000 38.9711i 0.486506 1.40442i
\(771\) 15.0000 25.9808i 0.540212 0.935674i
\(772\) 1.50000 0.866025i 0.0539862 0.0311689i
\(773\) −12.0000 + 6.92820i −0.431610 + 0.249190i −0.700032 0.714111i \(-0.746831\pi\)
0.268422 + 0.963301i \(0.413498\pi\)
\(774\) −33.0000 + 19.0526i −1.18616 + 0.684830i
\(775\) −3.00000 + 1.73205i −0.107763 + 0.0622171i
\(776\) 4.50000 7.79423i 0.161541 0.279797i
\(777\) 0 0
\(778\) 4.50000 2.59808i 0.161333 0.0931455i
\(779\) 4.50000 + 7.79423i 0.161229 + 0.279257i
\(780\) 1.50000 6.06218i 0.0537086 0.217061i
\(781\) −4.50000 + 7.79423i −0.161023 + 0.278899i
\(782\) 0 0
\(783\) −7.50000 12.9904i −0.268028 0.464238i
\(784\) 32.5000 12.9904i 1.16071 0.463942i
\(785\) 39.8372i 1.42185i
\(786\) 25.9808i 0.926703i
\(787\) −27.0000 + 15.5885i −0.962446 + 0.555668i −0.896925 0.442183i \(-0.854204\pi\)
−0.0655211 + 0.997851i \(0.520871\pi\)
\(788\) 19.5000 + 11.2583i 0.694659 + 0.401061i
\(789\) −3.00000 −0.106803
\(790\) 7.50000 + 12.9904i 0.266838 + 0.462177i
\(791\) 30.0000 25.9808i 1.06668 0.923770i
\(792\) 18.0000 0.639602
\(793\) −7.00000 24.2487i −0.248577 0.861097i
\(794\) 31.5000 54.5596i 1.11789 1.93625i
\(795\) 15.5885i 0.552866i
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) 16.5000 28.5788i 0.584460 1.01231i −0.410483 0.911868i \(-0.634640\pi\)
0.994943 0.100446i \(-0.0320269\pi\)
\(798\) −6.00000 + 5.19615i −0.212398 + 0.183942i
\(799\) 45.0000 + 25.9808i 1.59199 + 0.919133i
\(800\) 10.3923i 0.367423i
\(801\) 12.0000 + 6.92820i 0.423999 + 0.244796i
\(802\) 6.00000 + 10.3923i 0.211867 + 0.366965i
\(803\) 22.5000 38.9711i 0.794008 1.37526i
\(804\) −7.50000 + 4.33013i −0.264505 + 0.152712i
\(805\) 0 0
\(806\) −7.50000 + 7.79423i −0.264176 + 0.274540i
\(807\) −3.00000 5.19615i −0.105605 0.182913i
\(808\) 15.5885i 0.548400i
\(809\) −21.0000 −0.738321 −0.369160 0.929366i \(-0.620355\pi\)
−0.369160 + 0.929366i \(0.620355\pi\)
\(810\) 3.00000 0.105409
\(811\) 3.46410i 0.121641i −0.998149 0.0608205i \(-0.980628\pi\)
0.998149 0.0608205i \(-0.0193717\pi\)
\(812\) −6.00000 + 5.19615i −0.210559 + 0.182349i
\(813\) 15.0000 + 8.66025i 0.526073 + 0.303728i
\(814\) 0 0
\(815\) −10.5000 18.1865i −0.367799 0.637046i
\(816\) 30.0000 1.05021
\(817\) 16.5000 + 9.52628i 0.577262 + 0.333282i
\(818\) −12.0000 −0.419570
\(819\) 1.00000 19.0526i 0.0349428 0.665750i
\(820\) 9.00000 0.314294
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) −16.0000 27.7128i −0.557725 0.966008i −0.997686 0.0679910i \(-0.978341\pi\)
0.439961 0.898017i \(-0.354992\pi\)
\(824\) −19.5000 + 11.2583i −0.679315 + 0.392203i
\(825\) 9.00000 + 5.19615i 0.313340 + 0.180907i
\(826\) −15.0000 5.19615i −0.521917 0.180797i
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 10.3923i 0.360722i
\(831\) −5.00000 8.66025i −0.173448 0.300421i
\(832\) 1.00000 + 3.46410i 0.0346688 + 0.120096i
\(833\) 6.00000 41.5692i 0.207888 1.44029i
\(834\) 19.5000 11.2583i 0.675230 0.389844i
\(835\) 1.50000 2.59808i 0.0519096 0.0899101i
\(836\) 4.50000 + 7.79423i 0.155636 + 0.269569i
\(837\) 7.50000 + 4.33013i 0.259238 + 0.149671i
\(838\) 36.3731i 1.25649i
\(839\) 1.50000 + 0.866025i 0.0517858 + 0.0298985i 0.525669 0.850689i \(-0.323815\pi\)
−0.473884 + 0.880587i \(0.657148\pi\)
\(840\) −1.50000 7.79423i −0.0517549 0.268926i
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 6.92820i 0.238620i
\(844\) 6.50000 11.2583i 0.223739 0.387528i
\(845\) 10.5000 19.9186i 0.361211 0.685220i
\(846\) −30.0000 −1.03142
\(847\) 40.0000 + 13.8564i 1.37442 + 0.476112i
\(848\) −22.5000 38.9711i −0.772653 1.33827i
\(849\) −19.0000 −0.652078
\(850\) −18.0000 10.3923i −0.617395 0.356453i
\(851\) 0 0
\(852\) 1.73205i 0.0593391i
\(853\) 41.5692i 1.42330i 0.702533 + 0.711651i \(0.252052\pi\)
−0.702533 + 0.711651i \(0.747948\pi\)
\(854\) 21.0000 + 24.2487i 0.718605 + 0.829774i
\(855\) −3.00000 5.19615i −0.102598 0.177705i
\(856\) 0 0
\(857\) 16.5000 28.5788i 0.563629 0.976235i −0.433546 0.901131i \(-0.642738\pi\)
0.997176 0.0751033i \(-0.0239287\pi\)
\(858\) 31.5000 + 7.79423i 1.07539 + 0.266091i
\(859\) 14.5000 + 25.1147i 0.494734 + 0.856904i 0.999982 0.00607046i \(-0.00193230\pi\)
−0.505248 + 0.862974i \(0.668599\pi\)
\(860\) 16.5000 9.52628i 0.562645 0.324843i
\(861\) −13.5000 + 2.59808i −0.460079 + 0.0885422i
\(862\) 28.5000 49.3634i 0.970714 1.68133i
\(863\) −1.50000 + 0.866025i −0.0510606 + 0.0294798i −0.525313 0.850909i \(-0.676052\pi\)
0.474252 + 0.880389i \(0.342718\pi\)
\(864\) −22.5000 + 12.9904i −0.765466 + 0.441942i
\(865\) −22.5000 + 12.9904i −0.765023 + 0.441686i
\(866\) 28.5000 16.4545i 0.968469 0.559146i
\(867\) 9.50000 16.4545i 0.322637 0.558824i
\(868\) 1.50000 4.33013i 0.0509133 0.146974i
\(869\) −22.5000 + 12.9904i −0.763260 + 0.440668i
\(870\) 4.50000 + 7.79423i 0.152564 + 0.264249i
\(871\) −30.0000 + 8.66025i −1.01651 + 0.293442i
\(872\) −4.50000 + 7.79423i −0.152389 + 0.263946i
\(873\) 9.00000 + 5.19615i 0.304604 + 0.175863i
\(874\) 0 0
\(875\) −10.5000 + 30.3109i −0.354965 + 1.02470i
\(876\) 8.66025i 0.292603i
\(877\) 1.73205i 0.0584872i 0.999572 + 0.0292436i \(0.00930985\pi\)
−0.999572 + 0.0292436i \(0.990690\pi\)
\(878\) 12.0000 6.92820i 0.404980 0.233816i
\(879\) 22.5000 + 12.9904i 0.758906 + 0.438155i
\(880\) −45.0000 −1.51695
\(881\) 16.5000 + 28.5788i 0.555899 + 0.962846i 0.997833 + 0.0657979i \(0.0209593\pi\)
−0.441934 + 0.897048i \(0.645707\pi\)
\(882\) 9.00000 + 22.5167i 0.303046 + 0.758175i
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) −21.0000 5.19615i −0.706306 0.174766i
\(885\) −3.00000 + 5.19615i −0.100844 + 0.174667i
\(886\) 25.9808i 0.872841i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 0 0
\(889\) 6.50000 + 33.7750i 0.218003 + 1.13278i
\(890\) −18.0000 10.3923i −0.603361 0.348351i
\(891\) 5.19615i 0.174078i
\(892\) 4.50000 + 2.59808i 0.150671 + 0.0869900i
\(893\) 7.50000 + 12.9904i 0.250978 + 0.434707i
\(894\) 16.5000 28.5788i 0.551843 0.955819i
\(895\) −4.50000 + 2.59808i −0.150418 + 0.0868441i
\(896\) −21.0000 24.2487i −0.701561 0.810093i
\(897\) 0 0
\(898\) −1.50000 2.59808i −0.0500556 0.0866989i
\(899\) 5.19615i 0.173301i
\(900\) 4.00000 0.133333
\(901\) −54.0000 −1.79900
\(902\) 46.7654i 1.55712i
\(903\) −22.0000 + 19.0526i −0.732114 + 0.634029i
\(904\) −22.5000 12.9904i −0.748339 0.432054i
\(905\) −3.00000 + 1.73205i −0.0997234 + 0.0575753i
\(906\) −10.5000 18.1865i −0.348839 0.604207i
\(907\) −29.0000 −0.962929 −0.481465 0.876466i \(-0.659895\pi\)
−0.481465 + 0.876466i \(0.659895\pi\)
\(908\) −15.0000 8.66025i −0.497792 0.287401i
\(909\) 18.0000 0.597022
\(910\) −1.50000 + 28.5788i −0.0497245 + 0.947379i
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 7.50000 + 4.33013i 0.248350 + 0.143385i
\(913\) −18.0000 −0.595713
\(914\) 30.0000 + 51.9615i 0.992312 + 1.71873i
\(915\) 10.5000 6.06218i 0.347119 0.200409i
\(916\) 10.5000 + 6.06218i 0.346930 + 0.200300i
\(917\) 7.50000 + 38.9711i 0.247672 + 1.28694i
\(918\) 51.9615i 1.71499i
\(919\) −47.0000 −1.55039 −0.775193 0.631724i \(-0.782348\pi\)
−0.775193 + 0.631724i \(0.782348\pi\)
\(920\) 0 0
\(921\) 24.2487i 0.799022i
\(922\) −25.5000 44.1673i −0.839798 1.45457i
\(923\) 1.50000 6.06218i 0.0493731 0.199539i
\(924\) −13.5000 + 2.59808i −0.444117 + 0.0854704i
\(925\) 0 0
\(926\) −21.0000 + 36.3731i −0.690103 + 1.19529i
\(927\) −13.0000 22.5167i −0.426976 0.739544i
\(928\) 13.5000 + 7.79423i 0.443159 + 0.255858i
\(929\) 46.7654i 1.53432i −0.641455 0.767161i \(-0.721669\pi\)
0.641455 0.767161i \(-0.278331\pi\)
\(930\) −4.50000 2.59808i −0.147561 0.0851943i
\(931\) 7.50000 9.52628i 0.245803 0.312211i
\(932\) 1.50000 2.59808i 0.0491341 0.0851028i
\(933\) −7.50000 + 12.9904i −0.245539 + 0.425286i
\(934\) 36.3731i 1.19016i
\(935\) −27.0000 + 46.7654i −0.882994 + 1.52939i
\(936\) −12.0000 + 3.46410i −0.392232 + 0.113228i
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 30.0000 25.9808i 0.979535 0.848302i
\(939\) 9.50000 + 16.4545i 0.310021 + 0.536972i
\(940\) 15.0000 0.489246
\(941\) 4.50000 + 2.59808i 0.146696 + 0.0846949i 0.571551 0.820566i \(-0.306342\pi\)
−0.424856 + 0.905261i \(0.639675\pi\)
\(942\) −34.5000 + 19.9186i −1.12407 + 0.648983i
\(943\) 0 0
\(944\) 17.3205i 0.563735i
\(945\) 22.5000 4.33013i 0.731925 0.140859i
\(946\) 49.5000 + 85.7365i 1.60938 + 2.78753i
\(947\) −33.0000 19.0526i −1.07236 0.619125i −0.143532 0.989646i \(-0.545846\pi\)
−0.928824 + 0.370521i \(0.879179\pi\)
\(948\) 2.50000 4.33013i 0.0811962 0.140636i
\(949\) −7.50000 + 30.3109i −0.243460 + 0.983933i
\(950\) −3.00000 5.19615i −0.0973329 0.168585i
\(951\) −4.50000 + 2.59808i −0.145922 + 0.0842484i
\(952\) −27.0000 + 5.19615i −0.875075 + 0.168408i
\(953\) 28.5000 49.3634i 0.923206 1.59904i 0.128784 0.991673i \(-0.458893\pi\)
0.794422 0.607366i \(-0.207774\pi\)
\(954\) 27.0000 15.5885i 0.874157 0.504695i
\(955\) 22.5000 12.9904i 0.728083 0.420359i
\(956\) −9.00000 + 5.19615i −0.291081 + 0.168056i
\(957\) −13.5000 + 7.79423i −0.436393 + 0.251952i
\(958\) −25.5000 + 44.1673i −0.823868 + 1.42698i
\(959\) 0 0
\(960\) −1.50000 + 0.866025i −0.0484123 + 0.0279508i
\(961\) −14.0000 24.2487i −0.451613 0.782216i
\(962\) 0 0
\(963\) 0 0
\(964\) −6.00000 3.46410i −0.193247 0.111571i
\(965\) 1.50000 + 2.59808i 0.0482867 + 0.0836350i
\(966\) 0 0
\(967\) 10.3923i 0.334194i −0.985940 0.167097i \(-0.946561\pi\)
0.985940 0.167097i \(-0.0534393\pi\)
\(968\) 27.7128i 0.890724i
\(969\) 9.00000 5.19615i 0.289122 0.166924i
\(970\) −13.5000 7.79423i −0.433459 0.250258i
\(971\) 21.0000 0.673922 0.336961 0.941519i \(-0.390601\pi\)
0.336961 + 0.941519i \(0.390601\pi\)
\(972\) −8.00000 13.8564i −0.256600 0.444444i
\(973\) −26.0000 + 22.5167i −0.833522 + 0.721851i
\(974\) 42.0000 1.34577
\(975\) −7.00000 1.73205i −0.224179 0.0554700i
\(976\) 17.5000 30.3109i 0.560161 0.970228i
\(977\) 19.0526i 0.609545i 0.952425 + 0.304773i \(0.0985805\pi\)
−0.952425 + 0.304773i \(0.901420\pi\)
\(978\) −10.5000 + 18.1865i −0.335753 + 0.581541i
\(979\) 18.0000 31.1769i 0.575282 0.996419i
\(980\) −4.50000 11.2583i −0.143747 0.359634i
\(981\) −9.00000 5.19615i −0.287348 0.165900i
\(982\) 46.7654i 1.49234i
\(983\) 31.5000 + 18.1865i 1.00469 + 0.580060i 0.909634 0.415411i \(-0.136362\pi\)
0.0950602 + 0.995472i \(0.469696\pi\)
\(984\) 4.50000 + 7.79423i 0.143455 + 0.248471i
\(985\) −19.5000 + 33.7750i −0.621322 + 1.07616i
\(986\) 27.0000 15.5885i 0.859855 0.496438i
\(987\) −22.5000 + 4.33013i −0.716183 + 0.137829i
\(988\) −4.50000 4.33013i −0.143164 0.137760i
\(989\) 0 0
\(990\) 31.1769i 0.990867i
\(991\) 59.0000 1.87420 0.937098 0.349065i \(-0.113501\pi\)
0.937098 + 0.349065i \(0.113501\pi\)
\(992\) −9.00000 −0.285750
\(993\) 32.9090i 1.04433i
\(994\) 1.50000 + 7.79423i 0.0475771 + 0.247218i
\(995\) 6.00000 + 3.46410i 0.190213 + 0.109819i
\(996\) 3.00000 1.73205i 0.0950586 0.0548821i
\(997\) −1.00000 1.73205i −0.0316703 0.0548546i 0.849756 0.527176i \(-0.176749\pi\)
−0.881426 + 0.472322i \(0.843416\pi\)
\(998\) 3.00000 0.0949633
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 91.2.u.a.88.1 yes 2
3.2 odd 2 819.2.do.c.361.1 2
7.2 even 3 91.2.k.a.23.1 yes 2
7.3 odd 6 637.2.q.b.491.1 2
7.4 even 3 637.2.q.c.491.1 2
7.5 odd 6 637.2.k.b.569.1 2
7.6 odd 2 637.2.u.a.361.1 2
13.2 odd 12 1183.2.e.e.508.1 4
13.4 even 6 91.2.k.a.4.1 2
13.11 odd 12 1183.2.e.e.508.2 4
21.2 odd 6 819.2.bm.a.478.1 2
39.17 odd 6 819.2.bm.a.550.1 2
91.2 odd 12 1183.2.e.e.170.1 4
91.4 even 6 637.2.q.c.589.1 2
91.11 odd 12 8281.2.a.s.1.1 2
91.17 odd 6 637.2.q.b.589.1 2
91.24 even 12 8281.2.a.w.1.1 2
91.30 even 6 inner 91.2.u.a.30.1 yes 2
91.37 odd 12 1183.2.e.e.170.2 4
91.67 odd 12 8281.2.a.s.1.2 2
91.69 odd 6 637.2.k.b.459.1 2
91.80 even 12 8281.2.a.w.1.2 2
91.82 odd 6 637.2.u.a.30.1 2
273.212 odd 6 819.2.do.c.667.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.k.a.4.1 2 13.4 even 6
91.2.k.a.23.1 yes 2 7.2 even 3
91.2.u.a.30.1 yes 2 91.30 even 6 inner
91.2.u.a.88.1 yes 2 1.1 even 1 trivial
637.2.k.b.459.1 2 91.69 odd 6
637.2.k.b.569.1 2 7.5 odd 6
637.2.q.b.491.1 2 7.3 odd 6
637.2.q.b.589.1 2 91.17 odd 6
637.2.q.c.491.1 2 7.4 even 3
637.2.q.c.589.1 2 91.4 even 6
637.2.u.a.30.1 2 91.82 odd 6
637.2.u.a.361.1 2 7.6 odd 2
819.2.bm.a.478.1 2 21.2 odd 6
819.2.bm.a.550.1 2 39.17 odd 6
819.2.do.c.361.1 2 3.2 odd 2
819.2.do.c.667.1 2 273.212 odd 6
1183.2.e.e.170.1 4 91.2 odd 12
1183.2.e.e.170.2 4 91.37 odd 12
1183.2.e.e.508.1 4 13.2 odd 12
1183.2.e.e.508.2 4 13.11 odd 12
8281.2.a.s.1.1 2 91.11 odd 12
8281.2.a.s.1.2 2 91.67 odd 12
8281.2.a.w.1.1 2 91.24 even 12
8281.2.a.w.1.2 2 91.80 even 12