# Properties

 Label 2.2.d_f Base field $\F_{2}$ Dimension $2$ $p$-rank $2$ Ordinary Yes Supersingular No Simple Yes Geometrically simple No Primitive Yes Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2}$ Dimension: $2$ L-polynomial: $1 + 3 x + 5 x^{2} + 6 x^{3} + 4 x^{4}$ Frobenius angles: $\pm0.543118021706$, $\pm0.876451355039$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-3}, \sqrt{5})$$ Galois group: $C_2^2$ Jacobians: 1

This isogeny class is simple but not geometrically simple.

## Newton polygon

This isogeny class is ordinary. $p$-rank: $2$ Slopes: $[0, 0, 1, 1]$

## Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

• $y^2+(x^3+x+1)y=x^5+x^4+x^3+x$

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 19 19 76 171 1159 5776 11989 69939 261364 1113799

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 6 6 9 10 36 87 90 274 513 1086

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3}, \sqrt{5})$$.
Endomorphism algebra over $\overline{\F}_{2}$
 The base change of $A$ to $\F_{2^{6}}$ is 1.64.l 2 and its endomorphism algebra is $\mathrm{M}_{2}($$$\Q(\sqrt{-15})$$$)$
All geometric endomorphisms are defined over $\F_{2^{6}}$.
Remainder of endomorphism lattice by field
• Endomorphism algebra over $\F_{2^{2}}$  The base change of $A$ to $\F_{2^{2}}$ is the simple isogeny class 2.4.b_ad and its endomorphism algebra is $$\Q(\sqrt{-3}, \sqrt{5})$$.
• Endomorphism algebra over $\F_{2^{3}}$  The base change of $A$ to $\F_{2^{3}}$ is the simple isogeny class 2.8.a_l and its endomorphism algebra is $$\Q(\sqrt{-3}, \sqrt{5})$$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 2.2.ad_f $2$ 2.4.b_ad 2.2.ad_f $3$ 2.8.a_l 2.2.a_ab $3$ 2.8.a_l
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.2.ad_f $2$ 2.4.b_ad 2.2.ad_f $3$ 2.8.a_l 2.2.a_ab $3$ 2.8.a_l 2.2.a_b $12$ (not in LMFDB)