Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 7 x + 31 x^{2} )( 1 + 4 x + 31 x^{2} )$ |
| $1 - 3 x + 34 x^{2} - 93 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.283620691308$, $\pm0.616954024641$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $76$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $900$ | $982800$ | $887468400$ | $854332315200$ | $820001896897500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $29$ | $1021$ | $29792$ | $925081$ | $28642199$ | $887433118$ | $27512103809$ | $852891620881$ | $26439622160672$ | $819628287497701$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 76 curves (of which all are hyperelliptic):
- $y^2=3 x^6+10 x^5+14 x^4+23 x^3+6 x+8$
- $y^2=11 x^6+11 x^5+4 x^3+14 x^2+4 x+24$
- $y^2=25 x^6+20 x^5+17 x^4+23 x^3+13 x^2+10 x+8$
- $y^2=22 x^6+18 x^5+30 x^4+16 x^3+9 x^2+23 x+26$
- $y^2=20 x^6+13 x^5+27 x^4+11 x^3+23 x^2+4 x+18$
- $y^2=24 x^6+x^5+19 x^4+6 x^3+29 x^2+20 x+14$
- $y^2=15 x^6+21 x^5+18 x^3+6 x^2+8 x+12$
- $y^2=12 x^6+18 x^5+23 x^4+12 x^3+29 x^2+19 x+12$
- $y^2=x^6+x^3+6$
- $y^2=19 x^6+25 x^5+24 x^4+11 x^2+29 x+24$
- $y^2=12 x^5+29 x^4+7 x^3+6 x^2+21 x+5$
- $y^2=14 x^6+4 x^5+4 x^4+4 x^3+7 x^2+9 x+13$
- $y^2=30 x^5+9 x^4+4 x^3+12 x^2+24 x+27$
- $y^2=10 x^6+6 x^5+9 x^4+2 x^3+30 x^2+9 x+11$
- $y^2=30 x^6+21 x^5+5 x^4+17 x^3+21 x^2+10 x+9$
- $y^2=30 x^6+17 x^5+4 x^4+5 x^3+8 x^2+12 x+11$
- $y^2=7 x^6+15 x^5+28 x^4+17 x^3+12 x^2+9 x+26$
- $y^2=10 x^6+x^5+16 x^4+21 x^3+17 x^2+9 x+4$
- $y^2=25 x^6+2 x^4+27 x^3+30 x^2+20 x+6$
- $y^2=17 x^6+9 x^4+5 x^3+18 x^2+26 x+4$
- and 56 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{6}}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.ah $\times$ 1.31.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{31^{6}}$ is 1.887503681.acafa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{31^{2}}$
The base change of $A$ to $\F_{31^{2}}$ is 1.961.n $\times$ 1.961.bu. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{31^{3}}$
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.alw $\times$ 1.29791.lw. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.