L(s) = 1 | + 3-s + 3·5-s − 2·7-s − 9-s − 2·11-s − 2·13-s + 3·15-s + 4·17-s − 8·19-s − 2·21-s + 9·23-s + 25-s − 2·29-s − 7·31-s − 2·33-s − 6·35-s − 11·37-s − 2·39-s + 6·41-s − 6·43-s − 3·45-s + 16·47-s + 6·49-s + 4·51-s + 8·53-s − 6·55-s − 8·57-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s − 0.755·7-s − 1/3·9-s − 0.603·11-s − 0.554·13-s + 0.774·15-s + 0.970·17-s − 1.83·19-s − 0.436·21-s + 1.87·23-s + 1/5·25-s − 0.371·29-s − 1.25·31-s − 0.348·33-s − 1.01·35-s − 1.80·37-s − 0.320·39-s + 0.937·41-s − 0.914·43-s − 0.447·45-s + 2.33·47-s + 6/7·49-s + 0.560·51-s + 1.09·53-s − 0.809·55-s − 1.05·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.161238533\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.161238533\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.28030020696909154085974651898, −14.03028365827802226978533457695, −13.21360250199287938415795898000, −13.07157866190739138157139780231, −12.50420640112352694735407160234, −11.98337737607109060673329523815, −10.85862827889564040963379281665, −10.64132391117952879925337790245, −10.03086860437715033812573043024, −9.493335556861131114975513791281, −8.764378598884747806441631931744, −8.718623945860768571960683269952, −7.48612764691425437549580882573, −7.09147745434457443207327568161, −6.20506715360269760896144970392, −5.62373588893482846993949544263, −5.05638461162604557379224075722, −3.80500596388585644052637569942, −2.85432814896664270886895797804, −2.11123763103283648443805785938,
2.11123763103283648443805785938, 2.85432814896664270886895797804, 3.80500596388585644052637569942, 5.05638461162604557379224075722, 5.62373588893482846993949544263, 6.20506715360269760896144970392, 7.09147745434457443207327568161, 7.48612764691425437549580882573, 8.718623945860768571960683269952, 8.764378598884747806441631931744, 9.493335556861131114975513791281, 10.03086860437715033812573043024, 10.64132391117952879925337790245, 10.85862827889564040963379281665, 11.98337737607109060673329523815, 12.50420640112352694735407160234, 13.07157866190739138157139780231, 13.21360250199287938415795898000, 14.03028365827802226978533457695, 14.28030020696909154085974651898