Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 27 x + 372 x^{2} - 2619 x^{3} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.210071069217$, $\pm0.302779256252$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.677416.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $56$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7136$ | $88686208$ | $835340873600$ | $7840207372900864$ | $73743914914380483296$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $71$ | $9425$ | $915266$ | $88560609$ | $8587515191$ | $832971721790$ | $80798269415543$ | $7837433456409409$ | $760231058145229442$ | $73742412690279880625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=83 x^6+3 x^4+86 x^3+81 x^2+72 x+28$
- $y^2=6 x^6+77 x^5+63 x^4+6 x^3+79 x^2+94 x+90$
- $y^2=37 x^6+31 x^5+90 x^4+33 x^3+74 x^2+56 x+40$
- $y^2=92 x^6+14 x^5+50 x^4+75 x^3+19 x^2+63 x+93$
- $y^2=74 x^6+42 x^5+70 x^4+77 x^3+42 x^2+18 x+7$
- $y^2=82 x^6+53 x^5+72 x^4+58 x^3+11 x^2+22 x+58$
- $y^2=34 x^6+39 x^5+63 x^4+51 x^3+25 x^2+31 x+29$
- $y^2=5 x^6+79 x^5+37 x^4+27 x^3+29 x^2+7 x+68$
- $y^2=80 x^6+10 x^5+49 x^4+74 x^3+76 x^2+84 x+4$
- $y^2=45 x^6+49 x^5+14 x^4+11 x^3+34 x^2+20 x+38$
- $y^2=60 x^6+48 x^5+63 x^4+79 x^3+14 x^2+4 x+68$
- $y^2=5 x^6+82 x^5+35 x^4+33 x^3+40 x^2+47$
- $y^2=19 x^6+29 x^5+63 x^4+54 x^3+56 x^2+31 x+3$
- $y^2=96 x^6+50 x^5+74 x^4+96 x^3+54 x^2+66 x+90$
- $y^2=44 x^6+77 x^5+90 x^4+55 x^3+82 x^2+55 x+42$
- $y^2=77 x^6+22 x^5+47 x^4+8 x^3+63 x^2+9 x+25$
- $y^2=37 x^6+22 x^5+82 x^4+45 x^3+56 x^2+58 x+34$
- $y^2=17 x^6+65 x^5+87 x^4+38 x^3+40 x^2+66 x+30$
- $y^2=45 x^5+60 x^4+60 x^3+45 x^2+67 x+24$
- $y^2=34 x^6+93 x^5+6 x^4+92 x^3+10 x^2+31 x+92$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is 4.0.677416.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.97.bb_oi | $2$ | (not in LMFDB) |