Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 9 x + 62 x^{2} - 207 x^{3} + 529 x^{4}$ |
Frobenius angles: | $\pm0.260199902379$, $\pm0.418179396156$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3757.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $376$ | $303808$ | $152028832$ | $78451732224$ | $41414287011976$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $573$ | $12492$ | $280345$ | $6434445$ | $148031934$ | $3404840307$ | $78310705105$ | $1801149404292$ | $41426504438613$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=6 x^6+2 x^5+13 x^4+15 x^3+15 x^2+2 x+15$
- $y^2=11 x^5+7 x^4+8 x^3+15 x^2+16 x+10$
- $y^2=4 x^6+4 x^5+10 x^4+12 x^3+17 x^2+14 x+22$
- $y^2=17 x^6+21 x^5+8 x^4+5 x^3+17 x^2+4 x+12$
- $y^2=19 x^6+8 x^5+14 x^4+10 x^3+2 x^2+4 x+10$
- $y^2=2 x^6+9 x^5+15 x^4+10 x^2+6 x+22$
- $y^2=4 x^6+21 x^5+2 x^4+22 x^3+6 x^2+13 x+15$
- $y^2=7 x^6+11 x^5+6 x^4+15 x^3+5 x^2+12 x+20$
- $y^2=18 x^6+18 x^5+19 x^4+15 x^3+18 x^2+18 x+14$
- $y^2=22 x^6+9 x^5+12 x^4+21 x^3+5 x^2+22 x$
- $y^2=x^6+19 x^5+4 x^4+4 x^3+19 x^2+13 x+20$
- $y^2=22 x^6+15 x^5+14 x^4+19 x^3+11 x+11$
- $y^2=11 x^5+22 x^4+13 x^3+6 x^2+4 x+7$
- $y^2=21 x^6+6 x^5+12 x^4+16 x^3+22 x^2+10 x+21$
- $y^2=14 x^6+11 x^5+5 x^4+4 x^3+x^2+8 x$
- $y^2=21 x^6+22 x^5+10 x^4+3 x^3+10 x^2+11 x+11$
- $y^2=12 x^6+6 x^5+12 x^4+6 x^3+4 x+22$
- $y^2=x^6+14 x^5+14 x^4+16 x^3+11 x^2+15 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 4.0.3757.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.j_ck | $2$ | (not in LMFDB) |