Properties

Label 2.37.l_dw
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 11 x + 100 x^{2} + 407 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.591209716539$, $\pm0.713499096471$
Angle rank:  $2$ (numerical)
Number field:  4.0.223397.1
Galois group:  $D_{4}$
Jacobians:  $28$
Isomorphism classes:  28
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1888$ $1986176$ $2528077312$ $3514967446016$ $4809485300643808$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $49$ $1449$ $49906$ $1875489$ $69356949$ $2565647094$ $94931934433$ $3512479651233$ $129961746391690$ $4808584365386929$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.223397.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.al_dw$2$(not in LMFDB)