Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 74 x^{2} - 246 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.312250764283$, $\pm0.527951627138$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.83232.1 |
Galois group: | $D_{4}$ |
Jacobians: | $124$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1504$ | $3020032$ | $4776224224$ | $7982741864448$ | $13423242724309984$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1794$ | $69300$ | $2824990$ | $115861236$ | $4750096290$ | $194753028324$ | $7984920880318$ | $327381990054084$ | $13422659672884674$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=13 x^6+27 x^5+26 x^4+40 x^3+9 x^2+16 x+3$
- $y^2=34 x^6+33 x^5+39 x^4+21 x^3+36 x^2+6 x+33$
- $y^2=2 x^6+38 x^5+38 x^4+23 x^2+29 x+34$
- $y^2=27 x^6+22 x^5+35 x^4+6 x^3+x^2+23 x+26$
- $y^2=37 x^6+37 x^5+31 x^4+38 x^3+33 x^2+28 x+17$
- $y^2=40 x^6+18 x^4+x^3+25 x^2+13 x+24$
- $y^2=19 x^6+17 x^5+30 x^4+17 x^3+38 x+20$
- $y^2=8 x^6+40 x^5+34 x^4+29 x^3+20 x^2+16$
- $y^2=39 x^6+29 x^5+6 x^4+16 x^3+6 x^2+27 x+7$
- $y^2=17 x^6+26 x^5+6 x^4+23 x^3+27 x^2+34 x+19$
- $y^2=26 x^6+23 x^5+19 x^4+x^3+4 x^2+3 x+4$
- $y^2=28 x^6+38 x^5+12 x^4+17 x^3+36 x^2+39 x+7$
- $y^2=5 x^6+17 x^5+13 x^4+27 x^3+3 x^2+23 x+20$
- $y^2=29 x^6+4 x^5+27 x^3+4 x^2+36 x+40$
- $y^2=7 x^6+29 x^5+29 x^4+3 x^3+13 x^2+15 x+20$
- $y^2=23 x^6+25 x^5+3 x^4+36 x^3+40 x^2+34 x+32$
- $y^2=x^6+3 x^5+36 x^4+18 x^3+19 x^2+17 x+35$
- $y^2=26 x^6+3 x^5+26 x^4+4 x^3+x+31$
- $y^2=16 x^6+20 x^5+27 x^4+25 x^3+16 x^2+16 x$
- $y^2=29 x^6+4 x^5+32 x^4+5 x^3+5 x^2+19 x+35$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.83232.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.g_cw | $2$ | (not in LMFDB) |