Properties

Label 2.41.ag_cw
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 74 x^{2} - 246 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.312250764283$, $\pm0.527951627138$
Angle rank:  $2$ (numerical)
Number field:  4.0.83232.1
Galois group:  $D_{4}$
Jacobians:  $124$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1504$ $3020032$ $4776224224$ $7982741864448$ $13423242724309984$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $1794$ $69300$ $2824990$ $115861236$ $4750096290$ $194753028324$ $7984920880318$ $327381990054084$ $13422659672884674$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is 4.0.83232.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.g_cw$2$(not in LMFDB)