Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x + 110 x^{2} + 355 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.429836578308$, $\pm0.672334230618$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4075189.1 |
Galois group: | $D_{4}$ |
Jacobians: | $252$ |
Isomorphism classes: | 252 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5512$ | $26413504$ | $127935482272$ | $645734207562496$ | $3255171337627680952$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $77$ | $5237$ | $357452$ | $25410921$ | $1804189327$ | $128099748062$ | $9095129829457$ | $645753559880113$ | $45848499903456452$ | $3255243551203107677$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 252 curves (of which all are hyperelliptic):
- $y^2=19 x^6+54 x^5+63 x^4+65 x^3+37 x+3$
- $y^2=65 x^6+38 x^5+40 x^4+20 x^3+24 x^2+32 x+62$
- $y^2=8 x^6+34 x^5+19 x^4+52 x^3+63 x^2+50 x+12$
- $y^2=52 x^6+64 x^5+35 x^4+45 x^3+32 x^2+63 x+52$
- $y^2=39 x^6+66 x^5+2 x^4+44 x^3+45 x^2+55 x+45$
- $y^2=68 x^6+22 x^5+8 x^3+65 x^2+8 x+67$
- $y^2=64 x^6+51 x^5+4 x^4+64 x^3+13 x^2+26 x+66$
- $y^2=12 x^6+8 x^5+6 x^4+12 x^3+3 x^2+50 x+70$
- $y^2=27 x^6+x^5+22 x^4+7 x^3+54 x^2+55 x+32$
- $y^2=67 x^6+20 x^5+45 x^4+30 x^3+10 x^2+29 x+24$
- $y^2=13 x^6+65 x^5+35 x^4+58 x^3+13 x^2+34 x+49$
- $y^2=37 x^6+9 x^5+64 x^4+50 x^3+49 x^2+29 x+42$
- $y^2=66 x^6+15 x^5+39 x^4+61 x^3+30 x^2+35 x+38$
- $y^2=30 x^6+33 x^5+36 x^4+36 x^3+6 x^2+12 x+14$
- $y^2=70 x^6+31 x^5+22 x^4+20 x^3+63 x^2+40 x+8$
- $y^2=59 x^6+31 x^5+18 x^3+32 x^2+29 x+68$
- $y^2=52 x^6+16 x^5+67 x^4+43 x^3+12 x^2+7 x+31$
- $y^2=54 x^5+13 x^4+24 x^3+50 x^2+10 x+62$
- $y^2=12 x^6+9 x^5+19 x^4+22 x^3+35 x^2+16 x+29$
- $y^2=18 x^6+69 x^5+49 x^4+70 x^3+22 x^2+5 x+61$
- and 232 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.4075189.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.af_eg | $2$ | (not in LMFDB) |