Properties

Label 2.79.o_hi
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 + 14 x + 190 x^{2} + 1106 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.551742187162$, $\pm0.715196199349$
Angle rank:  $2$ (numerical)
Number field:  4.0.2312.1
Galois group:  $D_{4}$
Jacobians:  $180$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7552$ $40116224$ $242143619968$ $1517162214981632$ $9468443275450060672$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $6426$ $491122$ $38951454$ $3077110734$ $243087407130$ $19203909792994$ $1517108739149310$ $119851596534344446$ $9468276087756215386$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.2312.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.ao_hi$2$(not in LMFDB)