Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x + 190 x^{2} + 1106 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.551742187162$, $\pm0.715196199349$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2312.1 |
Galois group: | $D_{4}$ |
Jacobians: | $180$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7552$ | $40116224$ | $242143619968$ | $1517162214981632$ | $9468443275450060672$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $6426$ | $491122$ | $38951454$ | $3077110734$ | $243087407130$ | $19203909792994$ | $1517108739149310$ | $119851596534344446$ | $9468276087756215386$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=74 x^6+x^5+10 x^4+68 x^3+72 x^2+15 x+16$
- $y^2=67 x^5+31 x^4+3 x^3+58 x^2+7 x+75$
- $y^2=14 x^6+7 x^5+49 x^4+51 x^3+31 x^2+50 x+60$
- $y^2=49 x^6+37 x^5+15 x^4+51 x^3+32 x^2+29 x+58$
- $y^2=76 x^6+32 x^5+26 x^4+23 x^3+2 x^2+30 x+60$
- $y^2=47 x^6+10 x^5+13 x^4+55 x^3+28 x^2+56 x+63$
- $y^2=70 x^6+76 x^5+9 x^4+62 x^3+75 x^2+17 x+26$
- $y^2=48 x^6+40 x^5+62 x^4+74 x^3+70 x^2+4 x+76$
- $y^2=16 x^6+19 x^5+29 x^4+12 x^3+58 x^2+31 x+8$
- $y^2=44 x^6+7 x^5+50 x^4+77 x^3+6 x^2+38 x+35$
- $y^2=52 x^6+10 x^5+47 x^4+70 x^3+53 x^2+34 x+23$
- $y^2=3 x^6+4 x^5+77 x^4+43 x^3+62 x^2+65 x+18$
- $y^2=74 x^6+6 x^5+70 x^4+8 x^3+71 x^2+22 x+24$
- $y^2=58 x^6+x^5+6 x^4+37 x^3+20 x^2+48 x+66$
- $y^2=28 x^6+34 x^5+35 x^4+78 x^3+46 x^2+16 x+78$
- $y^2=18 x^6+71 x^5+78 x^4+49 x^3+35 x^2+73 x+71$
- $y^2=62 x^6+8 x^5+34 x^4+9 x^3+12 x^2+67 x+72$
- $y^2=63 x^6+48 x^5+41 x^4+41 x^3+6 x^2+71 x+3$
- $y^2=18 x^5+29 x^4+5 x^3+59 x^2+13 x+43$
- $y^2=42 x^6+11 x^5+24 x^4+30 x^3+52 x^2+71 x+72$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.2312.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.ao_hi | $2$ | (not in LMFDB) |