Properties

Label 2-8112-1.1-c1-0-82
Degree $2$
Conductor $8112$
Sign $-1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 2·15-s + 2·17-s − 4·19-s − 25-s − 27-s + 6·29-s + 2·37-s − 6·41-s + 12·43-s − 2·45-s − 4·47-s − 7·49-s − 2·51-s + 6·53-s + 4·57-s − 8·59-s − 2·61-s + 4·67-s − 12·71-s + 14·73-s + 75-s + 81-s + 8·83-s − 4·85-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.516·15-s + 0.485·17-s − 0.917·19-s − 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.328·37-s − 0.937·41-s + 1.82·43-s − 0.298·45-s − 0.583·47-s − 49-s − 0.280·51-s + 0.824·53-s + 0.529·57-s − 1.04·59-s − 0.256·61-s + 0.488·67-s − 1.42·71-s + 1.63·73-s + 0.115·75-s + 1/9·81-s + 0.878·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64872091674981426056879660984, −6.65271453087389754688678641765, −6.24481419022097484791190557388, −5.33123613268610301036992330808, −4.61954435744172704431317516175, −4.00277049810163717254171221200, −3.23264978418016443173698754103, −2.20668073069374298369043651343, −1.04399565494348541753349774873, 0, 1.04399565494348541753349774873, 2.20668073069374298369043651343, 3.23264978418016443173698754103, 4.00277049810163717254171221200, 4.61954435744172704431317516175, 5.33123613268610301036992330808, 6.24481419022097484791190557388, 6.65271453087389754688678641765, 7.64872091674981426056879660984

Graph of the $Z$-function along the critical line