L(s) = 1 | − 2·3-s − 6·5-s + 3·9-s − 6·11-s + 12·15-s − 2·19-s − 6·23-s + 19·25-s − 10·27-s + 12·29-s + 8·31-s + 12·33-s + 2·37-s − 18·45-s − 6·53-s + 36·55-s + 4·57-s − 6·59-s + 6·61-s − 6·67-s + 12·69-s − 12·73-s − 38·75-s + 6·79-s + 20·81-s − 12·83-s − 24·87-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 2.68·5-s + 9-s − 1.80·11-s + 3.09·15-s − 0.458·19-s − 1.25·23-s + 19/5·25-s − 1.92·27-s + 2.22·29-s + 1.43·31-s + 2.08·33-s + 0.328·37-s − 2.68·45-s − 0.824·53-s + 4.85·55-s + 0.529·57-s − 0.781·59-s + 0.768·61-s − 0.733·67-s + 1.44·69-s − 1.40·73-s − 4.38·75-s + 0.675·79-s + 20/9·81-s − 1.31·83-s − 2.57·87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45064092404618624576041391837, −9.755912146266170157356787980229, −9.363460232001938192223691988724, −8.277330397860609314401042911877, −8.197497193922523645982764813321, −8.135106824139695214037094799330, −7.53938533565767705793031433471, −7.16918649032956188654591363765, −6.58641186022314235151630850492, −6.23313657320194833803067148870, −5.49229157437087386847296677144, −5.12899649451736412572202856689, −4.41482417676933497181119838178, −4.30963641674011181378805949560, −3.85077914416148281400819986736, −2.94662097412163382535566968564, −2.62881084871766801544384656958, −1.22966827996759562250840495380, 0, 0,
1.22966827996759562250840495380, 2.62881084871766801544384656958, 2.94662097412163382535566968564, 3.85077914416148281400819986736, 4.30963641674011181378805949560, 4.41482417676933497181119838178, 5.12899649451736412572202856689, 5.49229157437087386847296677144, 6.23313657320194833803067148870, 6.58641186022314235151630850492, 7.16918649032956188654591363765, 7.53938533565767705793031433471, 8.135106824139695214037094799330, 8.197497193922523645982764813321, 8.277330397860609314401042911877, 9.363460232001938192223691988724, 9.755912146266170157356787980229, 10.45064092404618624576041391837