Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 121 x^{2} + 876 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.466215860358$, $\pm0.799549193691$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{61})\) |
Galois group: | $C_2^2$ |
Jacobians: | $208$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6339$ | $28924857$ | $151334851824$ | $806430132859689$ | $4297341520423513299$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $5428$ | $389018$ | $28397188$ | $2072934446$ | $151335477358$ | $11047401024494$ | $806460036208516$ | $58871586708267914$ | $4297625827579842868$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 208 curves (of which all are hyperelliptic):
- $y^2=7 x^6+70 x^5+31 x^4+60 x^3+16 x^2+34 x+21$
- $y^2=18 x^6+26 x^5+59 x^4+55 x^3+14 x^2+13 x+55$
- $y^2=70 x^6+52 x^5+24 x^4+x^3+5 x+13$
- $y^2=9 x^6+34 x^4+12 x^3+32 x^2+55 x+58$
- $y^2=12 x^6+22 x^5+62 x^4+59 x^3+36 x^2+65 x+72$
- $y^2=5 x^6+5 x^3+2$
- $y^2=57 x^6+49 x^5+31 x^4+58 x^3+29 x^2+32 x+33$
- $y^2=11 x^6+12 x^5+19 x^4+14 x^3+43 x^2+3 x+35$
- $y^2=60 x^6+16 x^5+34 x^4+39 x^3+24 x^2+8 x+16$
- $y^2=24 x^6+65 x^5+44 x^4+48 x^3+65 x^2+22 x+30$
- $y^2=71 x^6+67 x^5+33 x^4+5 x^3+4 x^2+18 x+37$
- $y^2=18 x^6+64 x^5+33 x^4+41 x^3+7 x^2+42 x+8$
- $y^2=53 x^6+14 x^5+9 x^4+9 x^3+69 x^2+20 x+42$
- $y^2=64 x^6+19 x^5+29 x^4+38 x^3+17 x^2+49 x+51$
- $y^2=32 x^6+9 x^5+16 x^4+29 x^3+21 x^2+7 x+30$
- $y^2=5 x^6+8 x^5+34 x^4+26 x^3+23 x^2+36 x+54$
- $y^2=23 x^6+10 x^5+66 x^4+41 x^3+39 x^2+41 x+26$
- $y^2=60 x^6+39 x^5+65 x^4+38 x^3+27 x^2+3 x+61$
- $y^2=25 x^6+20 x^5+3 x^4+22 x^3+26 x^2+10 x+24$
- $y^2=31 x^6+27 x^5+20 x^4+35 x^3+57 x^2+16 x+56$
- and 188 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{6}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{61})\). |
The base change of $A$ to $\F_{73^{6}}$ is 1.151334226289.bjpja 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-183}) \)$)$ |
- Endomorphism algebra over $\F_{73^{2}}$
The base change of $A$ to $\F_{73^{2}}$ is the simple isogeny class 2.5329.du_gil and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{61})\). - Endomorphism algebra over $\F_{73^{3}}$
The base change of $A$ to $\F_{73^{3}}$ is the simple isogeny class 2.389017.a_bjpja and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{61})\).
Base change
This is a primitive isogeny class.