Properties

Label 2-7488-1.1-c1-0-39
Degree $2$
Conductor $7488$
Sign $1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 4·7-s + 2·11-s + 13-s + 6·17-s + 4·19-s + 4·23-s + 11·25-s − 6·29-s − 8·31-s − 16·35-s + 10·37-s + 4·41-s − 4·43-s − 6·47-s + 9·49-s + 6·53-s − 8·55-s + 6·59-s + 6·61-s − 4·65-s + 10·71-s − 2·73-s + 8·77-s + 10·83-s − 24·85-s − 8·89-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.51·7-s + 0.603·11-s + 0.277·13-s + 1.45·17-s + 0.917·19-s + 0.834·23-s + 11/5·25-s − 1.11·29-s − 1.43·31-s − 2.70·35-s + 1.64·37-s + 0.624·41-s − 0.609·43-s − 0.875·47-s + 9/7·49-s + 0.824·53-s − 1.07·55-s + 0.781·59-s + 0.768·61-s − 0.496·65-s + 1.18·71-s − 0.234·73-s + 0.911·77-s + 1.09·83-s − 2.60·85-s − 0.847·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.045885049\)
\(L(\frac12)\) \(\approx\) \(2.045885049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84299131779587178569895671297, −7.46342453313584230019118360575, −6.78089096086834908852686039810, −5.46319754519636655265339925087, −5.14662523509473106904036588761, −4.09435176299410547015277416426, −3.79256094813629132082947144890, −2.89877338445118556705012658271, −1.51493457273732862172450204099, −0.798927434561717906550639137243, 0.798927434561717906550639137243, 1.51493457273732862172450204099, 2.89877338445118556705012658271, 3.79256094813629132082947144890, 4.09435176299410547015277416426, 5.14662523509473106904036588761, 5.46319754519636655265339925087, 6.78089096086834908852686039810, 7.46342453313584230019118360575, 7.84299131779587178569895671297

Graph of the $Z$-function along the critical line