L(s) = 1 | − 3-s − 4·5-s + 2·11-s − 13-s + 4·15-s − 7·19-s − 12·23-s + 5·25-s + 27-s − 16·29-s + 4·31-s − 2·33-s − 7·37-s + 39-s − 10·41-s − 7·43-s + 16·47-s + 7·49-s − 2·53-s − 8·55-s + 7·57-s − 12·61-s + 4·65-s − 12·67-s + 12·69-s − 6·71-s + 7·73-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.78·5-s + 0.603·11-s − 0.277·13-s + 1.03·15-s − 1.60·19-s − 2.50·23-s + 25-s + 0.192·27-s − 2.97·29-s + 0.718·31-s − 0.348·33-s − 1.15·37-s + 0.160·39-s − 1.56·41-s − 1.06·43-s + 2.33·47-s + 49-s − 0.274·53-s − 1.07·55-s + 0.927·57-s − 1.53·61-s + 0.496·65-s − 1.46·67-s + 1.44·69-s − 0.712·71-s + 0.819·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 553536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 553536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32165801844977326120532863574, −9.815742984975538980958403683791, −9.066706901098375683454219171018, −9.002128196817832553354133638352, −8.199383024586163812051703172797, −8.066747505713466329000281803737, −7.59858902260661772856832001490, −7.14115856533176818754357129917, −6.71686042770442582929074003690, −6.13050784041457670646743132343, −5.73787570426129041763139246492, −5.25644589924569892567826147377, −4.28814214517130195726052654429, −4.26656324138919095511737106704, −3.77418175541079537806180790539, −3.30796038011177653728720803610, −2.20174789807897169143214863835, −1.69359561366068207212931743756, 0, 0,
1.69359561366068207212931743756, 2.20174789807897169143214863835, 3.30796038011177653728720803610, 3.77418175541079537806180790539, 4.26656324138919095511737106704, 4.28814214517130195726052654429, 5.25644589924569892567826147377, 5.73787570426129041763139246492, 6.13050784041457670646743132343, 6.71686042770442582929074003690, 7.14115856533176818754357129917, 7.59858902260661772856832001490, 8.066747505713466329000281803737, 8.199383024586163812051703172797, 9.002128196817832553354133638352, 9.066706901098375683454219171018, 9.815742984975538980958403683791, 10.32165801844977326120532863574