Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 10 x + 59 x^{2} + 410 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.451889954144$, $\pm0.881443379189$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $70$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2161$ | $2854681$ | $4781999104$ | $7976346967849$ | $13420232445766801$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $1700$ | $69382$ | $2822724$ | $115835252$ | $4750274126$ | $194754283412$ | $7984928807044$ | $327381863616982$ | $13422659517342500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=37 x^6+14 x^5+39 x^4+2 x^3+25 x^2+14 x+6$
- $y^2=35 x^6+2 x^5+23 x^4+16 x^3+2 x^2+18 x+5$
- $y^2=8 x^6+37 x^5+37 x^4+27 x^3+24 x+33$
- $y^2=37 x^6+30 x^5+35 x^4+35 x^3+24 x^2+19 x+4$
- $y^2=27 x^6+14 x^5+11 x^4+39 x^3+6 x^2+2 x+4$
- $y^2=2 x^6+23 x^5+32 x^4+19 x^3+14 x^2+15 x+25$
- $y^2=24 x^6+36 x^5+11 x^4+38 x^3+22 x^2+25 x+13$
- $y^2=16 x^6+38 x^5+32 x^4+5 x^3+27 x^2+19 x+18$
- $y^2=37 x^6+28 x^5+39 x^4+17 x^3+22 x^2+25 x+10$
- $y^2=36 x^6+34 x^5+2 x^4+14 x^3+22 x^2+3 x+40$
- $y^2=22 x^6+39 x^5+16 x^4+24 x^3+20 x^2+36 x+16$
- $y^2=21 x^6+10 x^5+10 x^4+11 x^3+8 x^2+23 x+36$
- $y^2=32 x^6+27 x^5+20 x^4+x^3+35 x^2+35 x+32$
- $y^2=33 x^6+34 x^5+14 x^4+28 x^3+28 x^2+29 x+40$
- $y^2=35 x^6+36 x^5+5 x^4+21 x^3+5 x^2+10 x+28$
- $y^2=31 x^6+22 x^5+10 x^4+11 x^3+21 x^2+17 x+17$
- $y^2=18 x^6+8 x^5+22 x^4+22 x^3+26 x^2+13 x+17$
- $y^2=11 x^6+3 x^5+38 x^4+12 x^3+38 x^2+16 x+21$
- $y^2=5 x^6+5 x^5+20 x^4+39 x^3+4 x^2+17 x+40$
- $y^2=33 x^6+33 x^5+15 x^4+31 x^3+17 x^2+25 x+33$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{3}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{41^{3}}$ is 1.68921.iw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.