# Stored data for abelian variety isogeny class 2.41.k_ch, downloaded from the LMFDB on 18 September 2025. {"abvar_count": 2161, "abvar_counts": [2161, 2854681, 4781999104, 7976346967849, 13420232445766801, 22564297283790585856, 37929229050729125444641, 63759059484097516577686089, 107178907796429068502685942784, 180167785737463056899195810477401], "abvar_counts_str": "2161 2854681 4781999104 7976346967849 13420232445766801 22564297283790585856 37929229050729125444641 63759059484097516577686089 107178907796429068502685942784 180167785737463056899195810477401 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.451889954143944, 0.881443379189389], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 52, "curve_counts": [52, 1700, 69382, 2822724, 115835252, 4750274126, 194754283412, 7984928807044, 327381863616982, 13422659517342500], "curve_counts_str": "52 1700 69382 2822724 115835252 4750274126 194754283412 7984928807044 327381863616982 13422659517342500 ", "curves": ["y^2=37*x^6+14*x^5+39*x^4+2*x^3+25*x^2+14*x+6", "y^2=35*x^6+2*x^5+23*x^4+16*x^3+2*x^2+18*x+5", "y^2=8*x^6+37*x^5+37*x^4+27*x^3+24*x+33", "y^2=37*x^6+30*x^5+35*x^4+35*x^3+24*x^2+19*x+4", "y^2=27*x^6+14*x^5+11*x^4+39*x^3+6*x^2+2*x+4", "y^2=2*x^6+23*x^5+32*x^4+19*x^3+14*x^2+15*x+25", "y^2=24*x^6+36*x^5+11*x^4+38*x^3+22*x^2+25*x+13", "y^2=16*x^6+38*x^5+32*x^4+5*x^3+27*x^2+19*x+18", "y^2=37*x^6+28*x^5+39*x^4+17*x^3+22*x^2+25*x+10", "y^2=36*x^6+34*x^5+2*x^4+14*x^3+22*x^2+3*x+40", "y^2=22*x^6+39*x^5+16*x^4+24*x^3+20*x^2+36*x+16", "y^2=21*x^6+10*x^5+10*x^4+11*x^3+8*x^2+23*x+36", "y^2=32*x^6+27*x^5+20*x^4+x^3+35*x^2+35*x+32", "y^2=33*x^6+34*x^5+14*x^4+28*x^3+28*x^2+29*x+40", "y^2=35*x^6+36*x^5+5*x^4+21*x^3+5*x^2+10*x+28", "y^2=31*x^6+22*x^5+10*x^4+11*x^3+21*x^2+17*x+17", "y^2=18*x^6+8*x^5+22*x^4+22*x^3+26*x^2+13*x+17", "y^2=11*x^6+3*x^5+38*x^4+12*x^3+38*x^2+16*x+21", "y^2=5*x^6+5*x^5+20*x^4+39*x^3+4*x^2+17*x+40", "y^2=33*x^6+33*x^5+15*x^4+31*x^3+17*x^2+25*x+33", "y^2=2*x^6+40*x^5+29*x^4+11*x^3+36*x^2+38*x+2", "y^2=21*x^6+16*x^5+26*x^4+34*x^3+29*x^2+6*x+25", "y^2=36*x^6+13*x^5+17*x^4+3*x^3+39", "y^2=7*x^6+12*x^5+17*x^4+19*x^3+16*x^2+17", "y^2=32*x^6+10*x^5+3*x^4+25*x^3+15*x^2+24*x+21", "y^2=3*x^6+19*x^5+36*x^4+20*x^3+40*x^2+13*x+10", "y^2=16*x^6+7*x^5+15*x^4+4*x^3+4*x^2+13*x+24", "y^2=29*x^6+32*x^5+32*x^4+20*x^3+38*x^2+32*x+30", "y^2=24*x^6+35*x^5+9*x^4+31*x^3+39*x^2+33*x+17", "y^2=10*x^6+36*x^5+18*x^4+25*x^3+28*x^2+9*x+22", "y^2=17*x^6+13*x^5+28*x^4+8*x^3+8*x^2+11*x+10", "y^2=40*x^6+19*x^5+35*x^4+32*x^3+10*x^2+13*x+5", "y^2=34*x^6+7*x^5+31*x^4+34*x^3+19*x^2+3*x+27", "y^2=10*x^6+14*x^5+6*x^4+35*x^3+13*x^2+26*x+1", "y^2=28*x^6+12*x^5+8*x^4+14*x^3+7*x^2+7*x+22", "y^2=21*x^6+20*x^5+x^4+16*x^3+29*x^2+31*x+30", "y^2=30*x^6+11*x^5+38*x^4+36*x^3+25*x^2+24*x+6", "y^2=25*x^6+x^5+18*x^4+27*x^3+29*x^2+24*x+5", "y^2=39*x^6+20*x^5+33*x^4+11*x^3+14*x^2+10*x+28", "y^2=21*x^6+6*x^5+40*x^4+36*x^3+11*x^2+12*x+5", "y^2=25*x^6+11*x^5+34*x^4+39*x^3+34*x^2+38*x+38", "y^2=15*x^6+4*x^4+35*x^3+14*x^2+38*x+31", "y^2=34*x^6+11*x^5+28*x^4+34*x^3+25*x^2+37*x+40", "y^2=27*x^6+2*x^5+6*x^4+13*x^3+2*x^2+36*x+11", "y^2=21*x^6+4*x^5+34*x^4+14*x^3+28*x^2+13*x+34", "y^2=40*x^6+30*x^5+4*x^4+7*x^3+28*x^2+39*x+23", "y^2=10*x^6+14*x^5+36*x^4+27*x^3+32*x^2+6*x+26", "y^2=32*x^6+5*x^5+35*x^4+33*x^3+18*x^2+11*x+25", "y^2=30*x^6+28*x^5+32*x^4+23*x^3+28*x^2+x+15", "y^2=16*x^6+40*x^4+28*x^3+11*x^2+x+12", "y^2=13*x^6+29*x^5+9*x^4+16*x^3+8*x^2+5*x+33", "y^2=6*x^6+2*x^5+16*x^4+17*x^3+13*x^2+30*x+33", "y^2=4*x^6+37*x^5+37*x^4+34*x^3+11*x^2+25*x+27", "y^2=6*x^6+3*x^5+29*x^4+27*x^3+38*x^2+28*x+2", "y^2=37*x^6+29*x^5+18*x^4+7*x^3+32*x^2+32*x+20", "y^2=2*x^6+34*x^5+13*x^4+6*x^3+2*x^2+30*x+20", "y^2=2*x^6+11*x^5+40*x^4+13*x^3+35*x^2+21*x+40", "y^2=40*x^6+20*x^5+23*x^4+25*x^3+22*x^2+3*x+37", "y^2=15*x^6+3*x^5+36*x^4+40*x^3+24*x+4", "y^2=20*x^6+20*x^5+36*x^4+30*x^3+16*x^2+20*x+31", "y^2=10*x^6+7*x^5+8*x^4+20*x^3+28*x^2+40*x+37", "y^2=25*x^6+29*x^5+9*x^4+9*x^3+27*x^2+30*x+39", "y^2=23*x^6+6*x^5+40*x^4+20*x^3+23*x^2+6*x+17", "y^2=x^6+33*x^5+8*x^3+25*x^2+11", "y^2=21*x^6+20*x^5+28*x^4+32*x^3+9*x^2+36*x+36", "y^2=15*x^6+22*x^5+16*x^4+4*x^3+39*x^2+x+21", "y^2=25*x^6+40*x^5+26*x^4+28*x^3+7*x^2+13", "y^2=3*x^6+12*x^5+21*x^4+7*x^3+30*x^2+28*x+10", "y^2=16*x^6+27*x^5+10*x^4+2*x^3+30*x^2+14*x+3", "y^2=21*x^6+39*x^5+35*x^4+37*x^3+16*x^2+37*x+10"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.4.1"], "geometric_splitting_field": "2.0.4.1", "geometric_splitting_polynomials": [[1, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 70, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 70, "label": "2.41.k_ch", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 24, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.144.1"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 10, 59, 410, 1681], "poly_str": "1 10 59 410 1681 ", "primitive_models": [], "q": 41, "real_poly": [1, 10, -23], "simple_distinct": ["2.41.k_ch"], "simple_factors": ["2.41.k_chA"], "simple_multiplicities": [1], "singular_primes": ["2,3*F^2+2*F+V+6", "59,-44*F^2-F+V+34"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.144.1", "splitting_polynomials": [[1, 0, -1, 0, 1]], "twist_count": 16, "twists": [["2.41.ak_ch", "2.1681.s_acaf", 2], ["2.41.au_ha", "2.68921.rs_kweg", 3], ["2.41.ai_x", "2.2825761.aemw_oaixn", 4], ["2.41.i_x", "2.2825761.aemw_oaixn", 4], ["2.41.a_as", "2.4750104241.jria_cccwetvy", 6], ["2.41.u_ha", "2.4750104241.jria_cccwetvy", 6], ["2.41.as_gg", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.aq_fq", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.ac_c", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.a_s", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.c_c", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.i_x", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.q_fq", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.s_gg", "2.22563490300366186081.ouqvbrw_uhpqxurdifkmyg", 12], ["2.41.a_adc", "2.509111094534718962173411120845918138561.bgeiuwmxzcklbjw_qibzyqgborwscofihlbairufhpwg", 24], ["2.41.a_dc", "2.509111094534718962173411120845918138561.bgeiuwmxzcklbjw_qibzyqgborwscofihlbairufhpwg", 24]], "weak_equivalence_count": 6, "zfv_index": 944, "zfv_index_factorization": [[2, 4], [59, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 3481, "zfv_singular_count": 4, "zfv_singular_primes": ["2,3*F^2+2*F+V+6", "59,-44*F^2-F+V+34"]}