Properties

Label 2.29.q_es
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $( 1 + 8 x + 29 x^{2} )^{2}$
  $1 + 16 x + 122 x^{2} + 464 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.766493812366$, $\pm0.766493812366$
Angle rank:  $1$ (numerical)
Jacobians:  $5$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1444$ $698896$ $585930436$ $502578909184$ $420386049009124$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $830$ $24022$ $710574$ $20495486$ $594853166$ $17250091814$ $500243823454$ $14507160442318$ $420707192664350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The isogeny class factors as 1.29.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.aq_es$2$(not in LMFDB)
2.29.a_ag$2$(not in LMFDB)
2.29.ai_bj$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.aq_es$2$(not in LMFDB)
2.29.a_ag$2$(not in LMFDB)
2.29.ai_bj$3$(not in LMFDB)
2.29.a_g$4$(not in LMFDB)
2.29.i_bj$6$(not in LMFDB)