Properties

Label 2.83.ae_acp
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 - 4 x - 67 x^{2} - 332 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.0962147654295$, $\pm0.762881432096$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-79})\)
Galois group:  $C_2^2$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6487$ $46440433$ $325876572736$ $2252706192238489$ $15515599062187483207$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $6740$ $569924$ $47467044$ $3938928400$ $326940923270$ $27136061405680$ $2252292213295684$ $186940256845858172$ $15516041191926487700$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83^{3}}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-79})\).
Endomorphism algebra over $\overline{\F}_{83}$
The base change of $A$ to $\F_{83^{3}}$ is 1.571787.abjw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-79}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.e_acp$2$(not in LMFDB)
2.83.i_ha$3$(not in LMFDB)
2.83.ai_ha$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.e_acp$2$(not in LMFDB)
2.83.i_ha$3$(not in LMFDB)
2.83.ai_ha$6$(not in LMFDB)
2.83.a_fu$6$(not in LMFDB)
2.83.a_afu$12$(not in LMFDB)