Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x - 67 x^{2} - 332 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.0962147654295$, $\pm0.762881432096$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-79})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6487$ | $46440433$ | $325876572736$ | $2252706192238489$ | $15515599062187483207$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6740$ | $569924$ | $47467044$ | $3938928400$ | $326940923270$ | $27136061405680$ | $2252292213295684$ | $186940256845858172$ | $15516041191926487700$ |
Jacobians and polarizations
This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{3}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-79})\). |
The base change of $A$ to $\F_{83^{3}}$ is 1.571787.abjw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-79}) \)$)$ |
Base change
This is a primitive isogeny class.