L(s) = 1 | − 2·2-s − 3·3-s + 3·4-s − 5-s + 6·6-s − 7-s − 4·8-s + 6·9-s + 2·10-s − 9·12-s − 2·13-s + 2·14-s + 3·15-s + 5·16-s − 12·18-s − 2·19-s − 3·20-s + 3·21-s + 12·24-s + 4·26-s − 9·27-s − 3·28-s − 9·29-s − 6·30-s − 8·31-s − 6·32-s + 35-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.73·3-s + 3/2·4-s − 0.447·5-s + 2.44·6-s − 0.377·7-s − 1.41·8-s + 2·9-s + 0.632·10-s − 2.59·12-s − 0.554·13-s + 0.534·14-s + 0.774·15-s + 5/4·16-s − 2.82·18-s − 0.458·19-s − 0.670·20-s + 0.654·21-s + 2.44·24-s + 0.784·26-s − 1.73·27-s − 0.566·28-s − 1.67·29-s − 1.09·30-s − 1.43·31-s − 1.06·32-s + 0.169·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31588875935745795208413781780, −10.08965789392874766315017603931, −9.441059882757633026448659941786, −9.361469303294492760968238914149, −8.729650244708553949583419633140, −8.079672459695154435841726705262, −7.68246697990669215026946088794, −7.31789886586117032859422630741, −6.78787901492335549861798827823, −6.54145691846282398273810138875, −5.77085980274682732295768288850, −5.74803525457187469512994772055, −4.81762924018274443763444759378, −4.55081947928213342217778257302, −3.57012788919793055736804976877, −3.13670966998521605001242466226, −1.91664370796084748685425521482, −1.49592432160490729146114110591, 0, 0,
1.49592432160490729146114110591, 1.91664370796084748685425521482, 3.13670966998521605001242466226, 3.57012788919793055736804976877, 4.55081947928213342217778257302, 4.81762924018274443763444759378, 5.74803525457187469512994772055, 5.77085980274682732295768288850, 6.54145691846282398273810138875, 6.78787901492335549861798827823, 7.31789886586117032859422630741, 7.68246697990669215026946088794, 8.079672459695154435841726705262, 8.729650244708553949583419633140, 9.361469303294492760968238914149, 9.441059882757633026448659941786, 10.08965789392874766315017603931, 10.31588875935745795208413781780