| L(s) = 1 | + 2·3-s − 2·5-s − 4·11-s − 2·13-s − 4·15-s − 8·17-s + 2·19-s + 4·23-s − 4·25-s − 2·27-s − 12·31-s − 8·33-s + 16·37-s − 4·39-s − 12·43-s − 4·47-s − 16·51-s + 12·53-s + 8·55-s + 4·57-s + 2·59-s − 2·61-s + 4·65-s − 16·67-s + 8·69-s − 4·73-s − 8·75-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.894·5-s − 1.20·11-s − 0.554·13-s − 1.03·15-s − 1.94·17-s + 0.458·19-s + 0.834·23-s − 4/5·25-s − 0.384·27-s − 2.15·31-s − 1.39·33-s + 2.63·37-s − 0.640·39-s − 1.82·43-s − 0.583·47-s − 2.24·51-s + 1.64·53-s + 1.07·55-s + 0.529·57-s + 0.260·59-s − 0.256·61-s + 0.496·65-s − 1.95·67-s + 0.963·69-s − 0.468·73-s − 0.923·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39337984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39337984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.948818919488398160726333560706, −7.43998876743000581463994358104, −7.31003724112895062071724493660, −7.16835962094261489841952232759, −6.36759962798243432206291716335, −6.28441853973913646301673749067, −5.56734612949879290319990936268, −5.44208592528939446961605697305, −4.76934367674532220389670324813, −4.65992190911625580120420154320, −4.14847408448494649388695057910, −3.80926768636345113992586745861, −3.16696771579471733991759654098, −3.15306360203289288216961820494, −2.53330423651033050960874388709, −2.19294115135386060735377097562, −1.91186885221378642424102552386, −0.999322108200962951112315387171, 0, 0,
0.999322108200962951112315387171, 1.91186885221378642424102552386, 2.19294115135386060735377097562, 2.53330423651033050960874388709, 3.15306360203289288216961820494, 3.16696771579471733991759654098, 3.80926768636345113992586745861, 4.14847408448494649388695057910, 4.65992190911625580120420154320, 4.76934367674532220389670324813, 5.44208592528939446961605697305, 5.56734612949879290319990936268, 6.28441853973913646301673749067, 6.36759962798243432206291716335, 7.16835962094261489841952232759, 7.31003724112895062071724493660, 7.43998876743000581463994358104, 7.948818919488398160726333560706