Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 92 x^{2} - 118 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.367850876646$, $\pm0.588064297794$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.6214464.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $136$ |
| Isomorphism classes: | 136 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3454$ | $12759076$ | $42219392182$ | $146800263426256$ | $511120854507243574$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $3662$ | $205570$ | $12114870$ | $714930038$ | $42180170222$ | $2488649274638$ | $146830475970334$ | $8662996035866170$ | $511116751209654302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=51 x^6+9 x^5+39 x^4+22 x^3+30 x^2+6 x+58$
- $y^2=58 x^6+37 x^5+14 x^4+30 x^3+30 x^2+14 x+6$
- $y^2=43 x^6+39 x^5+33 x^4+34 x^3+36 x^2+x+46$
- $y^2=48 x^6+34 x^5+39 x^4+12 x^3+11 x^2+41 x+7$
- $y^2=40 x^6+41 x^5+38 x^4+30 x^3+52 x^2+58 x+15$
- $y^2=25 x^6+36 x^5+43 x^4+30 x^3+46 x^2+28 x+29$
- $y^2=19 x^6+41 x^5+26 x^4+39 x^3+54 x^2+57 x+13$
- $y^2=49 x^6+3 x^4+27 x^3+14 x^2+12 x+8$
- $y^2=20 x^6+18 x^5+18 x^4+48 x^3+27 x^2+44 x+57$
- $y^2=54 x^6+27 x^5+56 x^4+58 x^3+4 x+43$
- $y^2=6 x^5+46 x^4+18 x^3+56 x^2+40 x+42$
- $y^2=51 x^6+27 x^5+22 x^4+21 x^3+52 x^2+15 x+42$
- $y^2=45 x^6+22 x^5+22 x^4+19 x^3+8 x^2+29 x+29$
- $y^2=29 x^6+23 x^5+46 x^4+12 x^3+47 x^2+35 x+13$
- $y^2=41 x^6+22 x^5+x^4+51 x^3+35 x^2+38 x$
- $y^2=53 x^6+23 x^5+25 x^4+54 x^3+30 x^2+20 x+6$
- $y^2=26 x^6+22 x^5+11 x^4+34 x^3+14 x^2+x+20$
- $y^2=53 x^6+17 x^5+40 x^4+37 x^3+17 x^2+12 x+11$
- $y^2=22 x^6+21 x^5+x^4+14 x^3+54 x^2+48 x+9$
- $y^2=58 x^6+16 x^5+55 x^4+57 x^3+14 x^2+20 x+31$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.6214464.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.c_do | $2$ | (not in LMFDB) |