L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s − 4·6-s + 6·7-s − 4·8-s + 3·9-s − 6·11-s + 6·12-s + 4·13-s − 12·14-s + 5·16-s + 6·17-s − 6·18-s − 6·19-s + 12·21-s + 12·22-s + 4·23-s − 8·24-s − 8·26-s + 4·27-s + 18·28-s − 6·29-s − 6·32-s − 12·33-s − 12·34-s + 9·36-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s − 1.63·6-s + 2.26·7-s − 1.41·8-s + 9-s − 1.80·11-s + 1.73·12-s + 1.10·13-s − 3.20·14-s + 5/4·16-s + 1.45·17-s − 1.41·18-s − 1.37·19-s + 2.61·21-s + 2.55·22-s + 0.834·23-s − 1.63·24-s − 1.56·26-s + 0.769·27-s + 3.40·28-s − 1.11·29-s − 1.06·32-s − 2.08·33-s − 2.05·34-s + 3/2·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 37822500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37822500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.280576725\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.280576725\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216697400001565348780499549224, −7.982042988497676148142661054577, −7.66737875677556067789817997152, −7.48343729586253144002854153281, −7.24137524027520928901524438046, −6.67910449072440249200597975082, −6.17791727450396438057770800929, −5.64473820139787149001591811075, −5.43574628188603884144782227527, −5.17880883558508065602475910673, −4.43375909209477974261826726920, −4.33914712919037728486890601081, −3.64106138020897022020093211430, −3.33772475273336627924476462217, −2.74261026138627008923962796530, −2.34195390928561585523145891602, −1.92610844858019963774508057329, −1.78580960170885814817352350745, −0.892835671571846767840448227064, −0.78267062911916175287783047166,
0.78267062911916175287783047166, 0.892835671571846767840448227064, 1.78580960170885814817352350745, 1.92610844858019963774508057329, 2.34195390928561585523145891602, 2.74261026138627008923962796530, 3.33772475273336627924476462217, 3.64106138020897022020093211430, 4.33914712919037728486890601081, 4.43375909209477974261826726920, 5.17880883558508065602475910673, 5.43574628188603884144782227527, 5.64473820139787149001591811075, 6.17791727450396438057770800929, 6.67910449072440249200597975082, 7.24137524027520928901524438046, 7.48343729586253144002854153281, 7.66737875677556067789817997152, 7.982042988497676148142661054577, 8.216697400001565348780499549224