Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 82 x^{2} - 316 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.288888113243$, $\pm0.627748277133$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1313600.3 |
Galois group: | $D_{4}$ |
Jacobians: | $330$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6004$ | $39890576$ | $243072954676$ | $1517554948895744$ | $9468644832849315124$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $6390$ | $493012$ | $38961534$ | $3077176236$ | $243086063286$ | $19203897384244$ | $1517108844058494$ | $119851595882740108$ | $9468276084449615350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 330 curves (of which all are hyperelliptic):
- $y^2=39 x^6+57 x^5+33 x^4+2 x^3+32 x^2+31 x+73$
- $y^2=8 x^6+54 x^5+5 x^4+26 x^3+56 x^2+27 x+16$
- $y^2=53 x^6+28 x^5+9 x^4+23 x^3+70 x^2+37 x+69$
- $y^2=36 x^6+24 x^5+62 x^4+65 x^3+44 x^2+75 x+15$
- $y^2=26 x^6+19 x^5+20 x^4+33 x^3+59 x^2+36 x+48$
- $y^2=50 x^6+33 x^5+20 x^4+43 x^3+29 x^2+58 x+14$
- $y^2=73 x^6+35 x^5+35 x^4+48 x^3+53 x^2+75 x+21$
- $y^2=49 x^6+12 x^5+44 x^4+61 x^3+42 x^2+19 x+11$
- $y^2=49 x^6+68 x^5+32 x^4+77 x^3+56 x^2+71 x+47$
- $y^2=10 x^6+32 x^5+32 x^4+29 x^3+58 x^2+69 x+48$
- $y^2=59 x^6+27 x^5+30 x^4+48 x^3+56 x^2+42 x+9$
- $y^2=38 x^6+58 x^5+61 x^4+14 x^3+75 x^2+39 x+74$
- $y^2=2 x^6+62 x^5+23 x^4+78 x^3+30 x^2+78 x+60$
- $y^2=44 x^6+15 x^5+44 x^4+17 x^3+18 x^2+22 x+32$
- $y^2=19 x^6+15 x^5+25 x^4+17 x^3+77 x^2+41 x+60$
- $y^2=46 x^6+40 x^5+12 x^4+12 x^3+65 x^2+39 x+55$
- $y^2=74 x^6+50 x^5+32 x^4+37 x^3+53 x^2+43 x+15$
- $y^2=31 x^6+5 x^5+22 x^4+14 x^3+45 x^2+25 x+45$
- $y^2=36 x^6+5 x^5+73 x^4+3 x^3+69 x^2+59 x+75$
- $y^2=13 x^6+14 x^5+34 x^4+7 x^3+20 x^2+5 x+40$
- and 310 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.1313600.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.e_de | $2$ | (not in LMFDB) |