Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x + 214 x^{2} - 970 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.380263176618$, $\pm0.455187707833$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3191600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
Isomorphism classes: | 160 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8644$ | $91660976$ | $835265994436$ | $7835914982863616$ | $73739867010819192964$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $9738$ | $915184$ | $88512126$ | $8587043808$ | $832972060362$ | $80798308214824$ | $7837433693745918$ | $760231057411665928$ | $73742412678301925578$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=18 x^6+7 x^5+18 x^4+5 x^3+37 x^2+90 x+55$
- $y^2=24 x^6+51 x^5+61 x^4+58 x^3+67 x^2+18 x+38$
- $y^2=16 x^6+63 x^5+25 x^4+44 x^3+73 x^2+39 x+69$
- $y^2=19 x^6+6 x^5+21 x^4+51 x^3+53 x^2+13 x+36$
- $y^2=22 x^6+34 x^5+55 x^4+22 x^3+90 x^2+37 x+5$
- $y^2=27 x^6+31 x^5+45 x^4+27 x^3+72 x^2+60 x+82$
- $y^2=64 x^6+49 x^5+49 x^4+2 x^3+34 x^2+5 x+71$
- $y^2=45 x^6+69 x^5+66 x^4+51 x^3+47 x+91$
- $y^2=74 x^6+17 x^5+75 x^3+78 x^2+38 x+82$
- $y^2=92 x^6+4 x^5+70 x^4+59 x^3+16 x^2+75 x+14$
- $y^2=76 x^6+86 x^5+28 x^4+64 x^3+29 x^2+10 x+3$
- $y^2=28 x^6+79 x^5+96 x^4+40 x^3+76 x^2+61 x+18$
- $y^2=81 x^6+13 x^5+92 x^4+68 x^3+58 x^2+62 x+68$
- $y^2=67 x^6+45 x^5+58 x^4+40 x^3+29 x^2+57 x+38$
- $y^2=22 x^6+3 x^5+26 x^4+14 x^3+89 x^2+71 x+46$
- $y^2=76 x^6+59 x^5+80 x^4+55 x^3+17 x^2+18 x+49$
- $y^2=21 x^6+25 x^5+18 x^4+50 x^3+41 x^2+70 x+45$
- $y^2=41 x^6+90 x^5+95 x^4+22 x^3+70 x^2+18 x+3$
- $y^2=90 x^6+53 x^5+11 x^4+4 x^3+10 x^2+89 x+41$
- $y^2=82 x^6+47 x^5+18 x^4+88 x^3+67 x^2+13 x+46$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is 4.0.3191600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.k_ig | $2$ | (not in LMFDB) |