Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 222 x^{2} - 1424 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.270123032895$, $\pm0.440131200673$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $206$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6704$ | $64251136$ | $498596920496$ | $3936825417519104$ | $31181423218390965424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $8110$ | $707258$ | $62746014$ | $5584006314$ | $496981372366$ | $44231335242266$ | $3936588687634494$ | $350356402278237962$ | $31181719933158183150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 206 curves (of which all are hyperelliptic):
- $y^2=15 x^6+78 x^5+11 x^4+23 x^3+88 x^2+6 x+40$
- $y^2=45 x^6+43 x^5+65 x^4+7 x^3+24 x^2+57$
- $y^2=61 x^6+43 x^5+21 x^4+87 x^3+10 x^2+20 x+83$
- $y^2=62 x^6+39 x^5+48 x^4+68 x^3+75 x^2+59 x+56$
- $y^2=88 x^6+43 x^5+79 x^4+65 x^3+21 x^2+81 x+52$
- $y^2=54 x^6+61 x^5+26 x^4+12 x^3+46 x^2+7 x+16$
- $y^2=73 x^6+26 x^5+55 x^4+88 x^3+24 x^2+73 x+76$
- $y^2=31 x^6+17 x^5+62 x^4+20 x^3+32 x^2+6 x+77$
- $y^2=61 x^6+17 x^5+56 x^4+78 x^3+26 x^2+18 x+26$
- $y^2=67 x^6+80 x^5+38 x^4+20 x^3+32 x^2+42 x+57$
- $y^2=78 x^6+49 x^5+84 x^4+28 x^3+7 x^2+44$
- $y^2=38 x^6+73 x^5+84 x^4+68 x^3+82 x^2+87 x+43$
- $y^2=50 x^6+66 x^5+61 x^4+35 x^3+69 x^2+73 x+60$
- $y^2=48 x^6+69 x^5+24 x^4+34 x^3+14 x^2+36 x+79$
- $y^2=82 x^6+43 x^5+80 x^4+8 x^3+6 x^2+65 x+73$
- $y^2=11 x^6+49 x^5+30 x^4+4 x^3+27 x^2+39 x+30$
- $y^2=5 x^6+68 x^5+22 x^4+22 x^3+x^2+31 x+78$
- $y^2=52 x^6+25 x^5+88 x^4+44 x^3+18 x^2+9 x+36$
- $y^2=3 x^6+70 x^5+39 x^4+74 x^3+49 x^2+52 x+35$
- $y^2=40 x^6+64 x^5+62 x^4+69 x^3+52 x^2+6 x+39$
- and 186 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.6725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.q_io | $2$ | (not in LMFDB) |