Properties

Label 2-76e2-1.1-c1-0-35
Degree $2$
Conductor $5776$
Sign $1$
Analytic cond. $46.1215$
Root an. cond. $6.79128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s − 2·9-s − 3·11-s + 2·13-s − 6·17-s − 4·21-s + 6·23-s − 5·25-s + 5·27-s − 2·31-s + 3·33-s − 10·37-s − 2·39-s + 9·41-s + 4·43-s + 9·49-s + 6·51-s + 6·53-s + 9·59-s − 4·61-s − 8·63-s + 7·67-s − 6·69-s + 6·71-s − 73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s − 2/3·9-s − 0.904·11-s + 0.554·13-s − 1.45·17-s − 0.872·21-s + 1.25·23-s − 25-s + 0.962·27-s − 0.359·31-s + 0.522·33-s − 1.64·37-s − 0.320·39-s + 1.40·41-s + 0.609·43-s + 9/7·49-s + 0.840·51-s + 0.824·53-s + 1.17·59-s − 0.512·61-s − 1.00·63-s + 0.855·67-s − 0.722·69-s + 0.712·71-s − 0.117·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.1215\)
Root analytic conductor: \(6.79128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5776,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.468907456\)
\(L(\frac12)\) \(\approx\) \(1.468907456\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.172579614354324377311670896408, −7.44101697136447859157294105288, −6.69372501572221659699868927176, −5.77808754119992068778159446976, −5.24384583995636037802031925040, −4.68831140093909709494335669481, −3.80517416710362653522402828678, −2.61087972354877885021627800415, −1.89014609885089839433061628082, −0.65470027547235903230677355928, 0.65470027547235903230677355928, 1.89014609885089839433061628082, 2.61087972354877885021627800415, 3.80517416710362653522402828678, 4.68831140093909709494335669481, 5.24384583995636037802031925040, 5.77808754119992068778159446976, 6.69372501572221659699868927176, 7.44101697136447859157294105288, 8.172579614354324377311670896408

Graph of the $Z$-function along the critical line