Properties

Label 2-5200-1.1-c1-0-103
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 2·11-s − 13-s − 2·17-s − 2·19-s + 2·23-s − 4·27-s − 6·29-s − 2·31-s − 4·33-s + 6·37-s − 2·39-s + 2·41-s + 6·43-s − 8·47-s − 7·49-s − 4·51-s + 2·53-s − 4·57-s − 6·59-s − 14·61-s + 4·69-s − 10·71-s + 2·73-s + 4·79-s − 11·81-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 0.603·11-s − 0.277·13-s − 0.485·17-s − 0.458·19-s + 0.417·23-s − 0.769·27-s − 1.11·29-s − 0.359·31-s − 0.696·33-s + 0.986·37-s − 0.320·39-s + 0.312·41-s + 0.914·43-s − 1.16·47-s − 49-s − 0.560·51-s + 0.274·53-s − 0.529·57-s − 0.781·59-s − 1.79·61-s + 0.481·69-s − 1.18·71-s + 0.234·73-s + 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85052658969108827311113346194, −7.44305818517757472018800684692, −6.47202411196321581767915802789, −5.68989193388888299158530738836, −4.78903400360447838269387412877, −4.01501047657526438733304959362, −3.12609814824846506170449543026, −2.50757282461396971152814594714, −1.65667165457222088341231259370, 0, 1.65667165457222088341231259370, 2.50757282461396971152814594714, 3.12609814824846506170449543026, 4.01501047657526438733304959362, 4.78903400360447838269387412877, 5.68989193388888299158530738836, 6.47202411196321581767915802789, 7.44305818517757472018800684692, 7.85052658969108827311113346194

Graph of the $Z$-function along the critical line