Properties

Label 2-5160-1.1-c1-0-12
Degree $2$
Conductor $5160$
Sign $1$
Analytic cond. $41.2028$
Root an. cond. $6.41894$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s + 4·11-s − 2·13-s − 15-s + 6·17-s − 8·19-s − 4·21-s + 25-s + 27-s + 2·29-s − 8·31-s + 4·33-s + 4·35-s − 2·37-s − 2·39-s + 2·41-s − 43-s − 45-s + 8·47-s + 9·49-s + 6·51-s + 6·53-s − 4·55-s − 8·57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.258·15-s + 1.45·17-s − 1.83·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.696·33-s + 0.676·35-s − 0.328·37-s − 0.320·39-s + 0.312·41-s − 0.152·43-s − 0.149·45-s + 1.16·47-s + 9/7·49-s + 0.840·51-s + 0.824·53-s − 0.539·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5160\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(41.2028\)
Root analytic conductor: \(6.41894\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.676666724\)
\(L(\frac12)\) \(\approx\) \(1.676666724\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.376108195663805561321528729807, −7.32931519698551785382460092653, −6.91137859860674683865734955347, −6.19894764455387152020699847117, −5.39580068536724069843640364007, −4.09679395742503110976688839048, −3.79403924818835144177183627000, −2.97520595717042768646891191084, −2.03333223410725860124570841177, −0.66759142542773483292323325865, 0.66759142542773483292323325865, 2.03333223410725860124570841177, 2.97520595717042768646891191084, 3.79403924818835144177183627000, 4.09679395742503110976688839048, 5.39580068536724069843640364007, 6.19894764455387152020699847117, 6.91137859860674683865734955347, 7.32931519698551785382460092653, 8.376108195663805561321528729807

Graph of the $Z$-function along the critical line