Properties

Label 2-5100-1.1-c1-0-8
Degree $2$
Conductor $5100$
Sign $1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s + 3·11-s − 3·13-s + 17-s + 19-s − 4·21-s − 3·23-s + 27-s − 10·29-s + 6·31-s + 3·33-s + 4·37-s − 3·39-s + 5·41-s + 43-s + 2·47-s + 9·49-s + 51-s + 14·53-s + 57-s − 6·59-s + 8·61-s − 4·63-s + 12·67-s − 3·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.904·11-s − 0.832·13-s + 0.242·17-s + 0.229·19-s − 0.872·21-s − 0.625·23-s + 0.192·27-s − 1.85·29-s + 1.07·31-s + 0.522·33-s + 0.657·37-s − 0.480·39-s + 0.780·41-s + 0.152·43-s + 0.291·47-s + 9/7·49-s + 0.140·51-s + 1.92·53-s + 0.132·57-s − 0.781·59-s + 1.02·61-s − 0.503·63-s + 1.46·67-s − 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.850404124\)
\(L(\frac12)\) \(\approx\) \(1.850404124\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.244022891423895989561308872543, −7.40080586687189559809707521983, −6.89091279074149099443669476691, −6.13873412599510221461752555595, −5.45133061500081446581594646034, −4.22431790531969563742284589933, −3.72320999299337715202760871453, −2.88153473653649950737471871382, −2.09659259915980125198169433708, −0.70120583849027539965215713529, 0.70120583849027539965215713529, 2.09659259915980125198169433708, 2.88153473653649950737471871382, 3.72320999299337715202760871453, 4.22431790531969563742284589933, 5.45133061500081446581594646034, 6.13873412599510221461752555595, 6.89091279074149099443669476691, 7.40080586687189559809707521983, 8.244022891423895989561308872543

Graph of the $Z$-function along the critical line