L(s) = 1 | − 9-s + 8·11-s − 8·19-s − 4·29-s − 16·31-s − 12·41-s + 14·49-s + 24·59-s − 28·61-s + 16·71-s + 16·79-s + 81-s − 20·89-s − 8·99-s − 12·101-s − 36·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + ⋯ |
L(s) = 1 | − 1/3·9-s + 2.41·11-s − 1.83·19-s − 0.742·29-s − 2.87·31-s − 1.87·41-s + 2·49-s + 3.12·59-s − 3.58·61-s + 1.89·71-s + 1.80·79-s + 1/9·81-s − 2.11·89-s − 0.804·99-s − 1.19·101-s − 3.44·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.164407624\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.164407624\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.918197958112961084216394547938, −8.088078085062497659881020821369, −7.88172147093439417105074732699, −7.16042493093439203673160904572, −6.95733613986660732011496397802, −6.61548065550678293916053145047, −6.55491585043535998823067326448, −5.76204000281470405600526617975, −5.66910998952363233241607107513, −5.31309530311752212479735715925, −4.65328193659855710671160174356, −4.24464911594140542575326212724, −3.89857759123985928834040086071, −3.60445435903543290321774038593, −3.40882284369630044140144217101, −2.33968411710848432369505541757, −2.29414568521590372842859477024, −1.50794429003346791380644018311, −1.35172418208740981986415162107, −0.28990047752366773298050040821,
0.28990047752366773298050040821, 1.35172418208740981986415162107, 1.50794429003346791380644018311, 2.29414568521590372842859477024, 2.33968411710848432369505541757, 3.40882284369630044140144217101, 3.60445435903543290321774038593, 3.89857759123985928834040086071, 4.24464911594140542575326212724, 4.65328193659855710671160174356, 5.31309530311752212479735715925, 5.66910998952363233241607107513, 5.76204000281470405600526617975, 6.55491585043535998823067326448, 6.61548065550678293916053145047, 6.95733613986660732011496397802, 7.16042493093439203673160904572, 7.88172147093439417105074732699, 8.088078085062497659881020821369, 8.918197958112961084216394547938