Properties

Label 2-4725-1.1-c1-0-45
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 7-s + 6·11-s + 4·13-s + 4·16-s − 3·17-s + 2·19-s + 6·23-s + 2·28-s − 6·29-s − 4·31-s + 7·37-s − 3·41-s + 43-s − 12·44-s − 9·47-s + 49-s − 8·52-s + 6·53-s + 9·59-s − 10·61-s − 8·64-s + 4·67-s + 6·68-s − 2·73-s − 4·76-s − 6·77-s + ⋯
L(s)  = 1  − 4-s − 0.377·7-s + 1.80·11-s + 1.10·13-s + 16-s − 0.727·17-s + 0.458·19-s + 1.25·23-s + 0.377·28-s − 1.11·29-s − 0.718·31-s + 1.15·37-s − 0.468·41-s + 0.152·43-s − 1.80·44-s − 1.31·47-s + 1/7·49-s − 1.10·52-s + 0.824·53-s + 1.17·59-s − 1.28·61-s − 64-s + 0.488·67-s + 0.727·68-s − 0.234·73-s − 0.458·76-s − 0.683·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.670804326\)
\(L(\frac12)\) \(\approx\) \(1.670804326\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.602732393174404237866148028168, −7.58063200157021983087517906478, −6.75859152768769293203203244131, −6.14714357596105537691088287534, −5.36312439978648140825956137198, −4.42308775811997339878637655365, −3.80054544350962618750125520790, −3.21934784703981593410979330620, −1.66436292345690568857030330571, −0.77383862239072366344800085983, 0.77383862239072366344800085983, 1.66436292345690568857030330571, 3.21934784703981593410979330620, 3.80054544350962618750125520790, 4.42308775811997339878637655365, 5.36312439978648140825956137198, 6.14714357596105537691088287534, 6.75859152768769293203203244131, 7.58063200157021983087517906478, 8.602732393174404237866148028168

Graph of the $Z$-function along the critical line