Properties

Label 2-4176-1.1-c1-0-7
Degree $2$
Conductor $4176$
Sign $1$
Analytic cond. $33.3455$
Root an. cond. $5.77455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 2·13-s + 2·17-s − 4·23-s − 25-s − 29-s − 6·31-s + 8·35-s − 4·37-s + 2·41-s − 4·43-s + 8·47-s + 9·49-s − 14·53-s − 6·59-s − 8·61-s − 4·65-s + 12·67-s + 16·71-s − 2·73-s + 6·79-s + 2·83-s − 4·85-s + 14·89-s − 8·91-s − 14·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 0.554·13-s + 0.485·17-s − 0.834·23-s − 1/5·25-s − 0.185·29-s − 1.07·31-s + 1.35·35-s − 0.657·37-s + 0.312·41-s − 0.609·43-s + 1.16·47-s + 9/7·49-s − 1.92·53-s − 0.781·59-s − 1.02·61-s − 0.496·65-s + 1.46·67-s + 1.89·71-s − 0.234·73-s + 0.675·79-s + 0.219·83-s − 0.433·85-s + 1.48·89-s − 0.838·91-s − 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4176\)    =    \(2^{4} \cdot 3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(33.3455\)
Root analytic conductor: \(5.77455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4176,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8200508626\)
\(L(\frac12)\) \(\approx\) \(0.8200508626\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
29 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.302815177956909444494673508438, −7.70085637161607242276561348850, −6.95531634392195080398628392499, −6.23481184642361627827716563051, −5.61404148235702123127586932569, −4.48849015006953166000777911511, −3.51219621675131571260604400693, −3.37556090880625386854031493014, −1.99815517922978288240723862908, −0.49364605628437786580884547866, 0.49364605628437786580884547866, 1.99815517922978288240723862908, 3.37556090880625386854031493014, 3.51219621675131571260604400693, 4.48849015006953166000777911511, 5.61404148235702123127586932569, 6.23481184642361627827716563051, 6.95531634392195080398628392499, 7.70085637161607242276561348850, 8.302815177956909444494673508438

Graph of the $Z$-function along the critical line