| L(s) = 1 | − 4-s + 5·9-s + 2·11-s + 16-s + 20·29-s + 14·31-s − 5·36-s + 4·41-s − 2·44-s − 49-s − 10·59-s + 4·61-s − 64-s + 4·71-s − 10·79-s + 16·81-s + 10·99-s − 6·101-s − 20·116-s + 3·121-s − 14·124-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + 149-s + ⋯ |
| L(s) = 1 | − 1/2·4-s + 5/3·9-s + 0.603·11-s + 1/4·16-s + 3.71·29-s + 2.51·31-s − 5/6·36-s + 0.624·41-s − 0.301·44-s − 1/7·49-s − 1.30·59-s + 0.512·61-s − 1/8·64-s + 0.474·71-s − 1.12·79-s + 16/9·81-s + 1.00·99-s − 0.597·101-s − 1.85·116-s + 3/11·121-s − 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14822500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14822500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.766387474\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.766387474\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.596473926000624532606022497200, −8.340177375063835868609467998473, −7.943238234818647654080572489025, −7.71280349884212201208567960156, −7.05344707250717195239929398577, −6.72125213113334892972559048624, −6.67750464872572029760257228612, −5.99400642806858103432345363817, −5.98017964958354266558992430066, −4.97051501783891466187671284875, −4.83844141311108012716172212146, −4.42946532007662951490636689804, −4.34355928481966607717319474831, −3.71654280228839823234437195987, −3.25406590173642502167862157051, −2.63161551854811937983130351547, −2.43601804965468171397505533563, −1.34395316703829617433159156303, −1.24947080622664638296193395741, −0.67307536329080186556696887164,
0.67307536329080186556696887164, 1.24947080622664638296193395741, 1.34395316703829617433159156303, 2.43601804965468171397505533563, 2.63161551854811937983130351547, 3.25406590173642502167862157051, 3.71654280228839823234437195987, 4.34355928481966607717319474831, 4.42946532007662951490636689804, 4.83844141311108012716172212146, 4.97051501783891466187671284875, 5.98017964958354266558992430066, 5.99400642806858103432345363817, 6.67750464872572029760257228612, 6.72125213113334892972559048624, 7.05344707250717195239929398577, 7.71280349884212201208567960156, 7.943238234818647654080572489025, 8.340177375063835868609467998473, 8.596473926000624532606022497200