Properties

Label 2.59.k_fn
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 + 5 x + 59 x^{2} )^{2}$
  $1 + 10 x + 143 x^{2} + 590 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.605523279018$, $\pm0.605523279018$
Angle rank:  $1$ (numerical)
Jacobians:  $30$
Cyclic group of points:    no
Non-cyclic primes:   $5, 13$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4225$ $12780625$ $41869344400$ $146789580705625$ $511192932752880625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $70$ $3668$ $203860$ $12113988$ $715030850$ $42180199958$ $2488646866790$ $146830480381828$ $8662995877231180$ $511116750483887348$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ak_fn$2$(not in LMFDB)
2.59.a_dp$2$(not in LMFDB)
2.59.af_abi$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ak_fn$2$(not in LMFDB)
2.59.a_dp$2$(not in LMFDB)
2.59.af_abi$3$(not in LMFDB)
2.59.a_adp$4$(not in LMFDB)
2.59.f_abi$6$(not in LMFDB)