L(s) = 1 | − 4-s − 4·5-s − 2·7-s + 4·13-s + 16-s + 4·20-s + 12·23-s + 2·25-s + 2·28-s + 4·29-s + 8·35-s + 3·49-s − 4·52-s + 16·53-s − 16·59-s − 64-s − 16·65-s − 8·67-s − 4·71-s − 4·80-s − 32·83-s − 8·91-s − 12·92-s − 2·100-s + 8·103-s − 28·107-s − 36·109-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.78·5-s − 0.755·7-s + 1.10·13-s + 1/4·16-s + 0.894·20-s + 2.50·23-s + 2/5·25-s + 0.377·28-s + 0.742·29-s + 1.35·35-s + 3/7·49-s − 0.554·52-s + 2.19·53-s − 2.08·59-s − 1/8·64-s − 1.98·65-s − 0.977·67-s − 0.474·71-s − 0.447·80-s − 3.51·83-s − 0.838·91-s − 1.25·92-s − 1/5·100-s + 0.788·103-s − 2.70·107-s − 3.44·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13351716 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13351716 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3505357432\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3505357432\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.898039231181463492435128849424, −8.496618474873186071655816998977, −8.022456425533532783047085129639, −7.48287679165733303619613175061, −7.41056376594535506819627682266, −6.93481132231521312814331749609, −6.63889830567276750009890291212, −6.04907551410970446755937417953, −5.83893154754430655859080133759, −5.21197072508469921628679374344, −4.91552094777684829492894669011, −4.35937182478706404543176800831, −4.03225237605018161961234303240, −3.76518590747653290770576715337, −3.35842512617870981390284114698, −2.74628649096403261060761440718, −2.69926644537589361240754875041, −1.28340812781489570559167210247, −1.22154529781302261322104678242, −0.20684018429380617775513423995,
0.20684018429380617775513423995, 1.22154529781302261322104678242, 1.28340812781489570559167210247, 2.69926644537589361240754875041, 2.74628649096403261060761440718, 3.35842512617870981390284114698, 3.76518590747653290770576715337, 4.03225237605018161961234303240, 4.35937182478706404543176800831, 4.91552094777684829492894669011, 5.21197072508469921628679374344, 5.83893154754430655859080133759, 6.04907551410970446755937417953, 6.63889830567276750009890291212, 6.93481132231521312814331749609, 7.41056376594535506819627682266, 7.48287679165733303619613175061, 8.022456425533532783047085129639, 8.496618474873186071655816998977, 8.898039231181463492435128849424