Properties

Label 3654.2.g.b.2899.1
Level $3654$
Weight $2$
Character 3654.2899
Analytic conductor $29.177$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(2899,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.2899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,-4,0,-2,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2899.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3654.2899
Dual form 3654.2.g.b.2899.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} +1.00000i q^{8} +2.00000i q^{10} -4.00000i q^{11} +2.00000 q^{13} +1.00000i q^{14} +1.00000 q^{16} +2.00000i q^{17} -4.00000i q^{19} +2.00000 q^{20} -4.00000 q^{22} +6.00000 q^{23} -1.00000 q^{25} -2.00000i q^{26} +1.00000 q^{28} +(2.00000 - 5.00000i) q^{29} +4.00000i q^{31} -1.00000i q^{32} +2.00000 q^{34} +2.00000 q^{35} +4.00000i q^{37} -4.00000 q^{38} -2.00000i q^{40} -2.00000i q^{41} +6.00000i q^{43} +4.00000i q^{44} -6.00000i q^{46} -12.0000i q^{47} +1.00000 q^{49} +1.00000i q^{50} -2.00000 q^{52} +8.00000 q^{53} +8.00000i q^{55} -1.00000i q^{56} +(-5.00000 - 2.00000i) q^{58} -8.00000 q^{59} -2.00000i q^{61} +4.00000 q^{62} -1.00000 q^{64} -4.00000 q^{65} -4.00000 q^{67} -2.00000i q^{68} -2.00000i q^{70} -2.00000 q^{71} -10.0000i q^{73} +4.00000 q^{74} +4.00000i q^{76} +4.00000i q^{77} +10.0000i q^{79} -2.00000 q^{80} -2.00000 q^{82} -16.0000 q^{83} -4.00000i q^{85} +6.00000 q^{86} +4.00000 q^{88} -2.00000i q^{89} -2.00000 q^{91} -6.00000 q^{92} -12.0000 q^{94} +8.00000i q^{95} -10.0000i q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{5} - 2 q^{7} + 4 q^{13} + 2 q^{16} + 4 q^{20} - 8 q^{22} + 12 q^{23} - 2 q^{25} + 2 q^{28} + 4 q^{29} + 4 q^{34} + 4 q^{35} - 8 q^{38} + 2 q^{49} - 4 q^{52} + 16 q^{53} - 10 q^{58}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000i 0.632456i
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.00000i 0.392232i
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.00000 5.00000i 0.371391 0.928477i
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 2.00000i 0.316228i
\(41\) 2.00000i 0.312348i −0.987730 0.156174i \(-0.950084\pi\)
0.987730 0.156174i \(-0.0499160\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) 12.0000i 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) 8.00000i 1.07872i
\(56\) 1.00000i 0.133631i
\(57\) 0 0
\(58\) −5.00000 2.00000i −0.656532 0.262613i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i −0.991769 0.128037i \(-0.959132\pi\)
0.991769 0.128037i \(-0.0408676\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 0 0
\(70\) 2.00000i 0.239046i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 10.0000i 1.12509i 0.826767 + 0.562544i \(0.190177\pi\)
−0.826767 + 0.562544i \(0.809823\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 6.00000 0.646997
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 2.00000i 0.212000i −0.994366 0.106000i \(-0.966196\pi\)
0.994366 0.106000i \(-0.0338043\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 8.00000i 0.820783i
\(96\) 0 0
\(97\) 10.0000i 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 2.00000i 0.196116i
\(105\) 0 0
\(106\) 8.00000i 0.777029i
\(107\) −14.0000 −1.35343 −0.676716 0.736245i \(-0.736597\pi\)
−0.676716 + 0.736245i \(0.736597\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 8.00000 0.762770
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) 2.00000i 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) −2.00000 + 5.00000i −0.185695 + 0.464238i
\(117\) 0 0
\(118\) 8.00000i 0.736460i
\(119\) 2.00000i 0.183340i
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 4.00000i 0.350823i
\(131\) 12.0000i 1.04844i −0.851581 0.524222i \(-0.824356\pi\)
0.851581 0.524222i \(-0.175644\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 4.00000i 0.345547i
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) −4.00000 + 10.0000i −0.332182 + 0.830455i
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 8.00000i 0.642575i
\(156\) 0 0
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) 2.00000i 0.158114i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 10.0000i 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) 2.00000i 0.156174i
\(165\) 0 0
\(166\) 16.0000i 1.24184i
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 6.00000i 0.457496i
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 4.00000i 0.301511i
\(177\) 0 0
\(178\) −2.00000 −0.149906
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 0 0
\(184\) 6.00000i 0.442326i
\(185\) 8.00000i 0.588172i
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 12.0000i 0.875190i
\(189\) 0 0
\(190\) 8.00000 0.580381
\(191\) 24.0000i 1.73658i −0.496058 0.868290i \(-0.665220\pi\)
0.496058 0.868290i \(-0.334780\pi\)
\(192\) 0 0
\(193\) 8.00000i 0.575853i 0.957653 + 0.287926i \(0.0929658\pi\)
−0.957653 + 0.287926i \(0.907034\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) −2.00000 + 5.00000i −0.140372 + 0.350931i
\(204\) 0 0
\(205\) 4.00000i 0.279372i
\(206\) 4.00000i 0.278693i
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 10.0000i 0.688428i 0.938891 + 0.344214i \(0.111855\pi\)
−0.938891 + 0.344214i \(0.888145\pi\)
\(212\) −8.00000 −0.549442
\(213\) 0 0
\(214\) 14.0000i 0.957020i
\(215\) 12.0000i 0.818393i
\(216\) 0 0
\(217\) 4.00000i 0.271538i
\(218\) 18.0000i 1.21911i
\(219\) 0 0
\(220\) 8.00000i 0.539360i
\(221\) 4.00000i 0.269069i
\(222\) 0 0
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 18.0000i 1.18947i −0.803921 0.594737i \(-0.797256\pi\)
0.803921 0.594737i \(-0.202744\pi\)
\(230\) 12.0000i 0.791257i
\(231\) 0 0
\(232\) 5.00000 + 2.00000i 0.328266 + 0.131306i
\(233\) 20.0000 1.31024 0.655122 0.755523i \(-0.272617\pi\)
0.655122 + 0.755523i \(0.272617\pi\)
\(234\) 0 0
\(235\) 24.0000i 1.56559i
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) 2.00000i 0.128037i
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 12.0000i 0.758947i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 24.0000i 1.50887i
\(254\) 18.0000 1.12942
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 4.00000i 0.248548i
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) 8.00000i 0.493301i −0.969104 0.246651i \(-0.920670\pi\)
0.969104 0.246651i \(-0.0793300\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 16.0000i 0.971931i −0.873978 0.485965i \(-0.838468\pi\)
0.873978 0.485965i \(-0.161532\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 4.00000i 0.241209i
\(276\) 0 0
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) 2.00000i 0.119523i
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) 2.00000i 0.118056i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 10.0000 + 4.00000i 0.587220 + 0.234888i
\(291\) 0 0
\(292\) 10.0000i 0.585206i
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 6.00000i 0.345834i
\(302\) 16.0000i 0.920697i
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 4.00000i 0.229039i
\(306\) 0 0
\(307\) 24.0000i 1.36975i 0.728659 + 0.684876i \(0.240144\pi\)
−0.728659 + 0.684876i \(0.759856\pi\)
\(308\) 4.00000i 0.227921i
\(309\) 0 0
\(310\) −8.00000 −0.454369
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 0 0
\(319\) −20.0000 8.00000i −1.11979 0.447914i
\(320\) 2.00000 0.111803
\(321\) 0 0
\(322\) 6.00000i 0.334367i
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) −10.0000 −0.553849
\(327\) 0 0
\(328\) 2.00000 0.110432
\(329\) 12.0000i 0.661581i
\(330\) 0 0
\(331\) 10.0000i 0.549650i −0.961494 0.274825i \(-0.911380\pi\)
0.961494 0.274825i \(-0.0886199\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 28.0000i 1.52526i 0.646837 + 0.762629i \(0.276092\pi\)
−0.646837 + 0.762629i \(0.723908\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 0 0
\(340\) 4.00000i 0.216930i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) 18.0000i 0.967686i
\(347\) 6.00000 0.322097 0.161048 0.986947i \(-0.448512\pi\)
0.161048 + 0.986947i \(0.448512\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 1.00000i 0.0534522i
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 4.00000 0.212298
\(356\) 2.00000i 0.106000i
\(357\) 0 0
\(358\) 18.0000i 0.951330i
\(359\) 16.0000i 0.844448i −0.906492 0.422224i \(-0.861250\pi\)
0.906492 0.422224i \(-0.138750\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 10.0000i 0.525588i
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 20.0000i 1.04685i
\(366\) 0 0
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) −8.00000 −0.415900
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 8.00000i 0.413670i
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 4.00000 10.0000i 0.206010 0.515026i
\(378\) 0 0
\(379\) 34.0000i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(380\) 8.00000i 0.410391i
\(381\) 0 0
\(382\) −24.0000 −1.22795
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 8.00000i 0.407718i
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) 10.0000i 0.507673i
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) 8.00000i 0.403034i
\(395\) 20.0000i 1.00631i
\(396\) 0 0
\(397\) −30.0000 −1.50566 −0.752828 0.658217i \(-0.771311\pi\)
−0.752828 + 0.658217i \(0.771311\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 6.00000i 0.298511i
\(405\) 0 0
\(406\) 5.00000 + 2.00000i 0.248146 + 0.0992583i
\(407\) 16.0000 0.793091
\(408\) 0 0
\(409\) 2.00000i 0.0988936i 0.998777 + 0.0494468i \(0.0157458\pi\)
−0.998777 + 0.0494468i \(0.984254\pi\)
\(410\) 4.00000 0.197546
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) 2.00000i 0.0980581i
\(417\) 0 0
\(418\) 16.0000i 0.782586i
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 8.00000i 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(422\) 10.0000 0.486792
\(423\) 0 0
\(424\) 8.00000i 0.388514i
\(425\) 2.00000i 0.0970143i
\(426\) 0 0
\(427\) 2.00000i 0.0967868i
\(428\) 14.0000 0.676716
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 22.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(432\) 0 0
\(433\) 34.0000i 1.63394i −0.576683 0.816968i \(-0.695653\pi\)
0.576683 0.816968i \(-0.304347\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 18.0000 0.862044
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) −8.00000 −0.381385
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 0 0
\(445\) 4.00000i 0.189618i
\(446\) 12.0000i 0.568216i
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 2.00000i 0.0940721i
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −18.0000 −0.841085
\(459\) 0 0
\(460\) 12.0000 0.559503
\(461\) 14.0000i 0.652045i −0.945362 0.326023i \(-0.894291\pi\)
0.945362 0.326023i \(-0.105709\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 2.00000 5.00000i 0.0928477 0.232119i
\(465\) 0 0
\(466\) 20.0000i 0.926482i
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 24.0000 1.10704
\(471\) 0 0
\(472\) 8.00000i 0.368230i
\(473\) 24.0000 1.10352
\(474\) 0 0
\(475\) 4.00000i 0.183533i
\(476\) 2.00000i 0.0916698i
\(477\) 0 0
\(478\) 30.0000i 1.37217i
\(479\) 4.00000i 0.182765i −0.995816 0.0913823i \(-0.970871\pi\)
0.995816 0.0913823i \(-0.0291285\pi\)
\(480\) 0 0
\(481\) 8.00000i 0.364769i
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 20.0000i 0.908153i
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 2.00000 0.0905357
\(489\) 0 0
\(490\) 2.00000i 0.0903508i
\(491\) 12.0000i 0.541552i 0.962642 + 0.270776i \(0.0872803\pi\)
−0.962642 + 0.270776i \(0.912720\pi\)
\(492\) 0 0
\(493\) 10.0000 + 4.00000i 0.450377 + 0.180151i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 12.0000i 0.533993i
\(506\) −24.0000 −1.06693
\(507\) 0 0
\(508\) 18.0000i 0.798621i
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 10.0000i 0.442374i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 2.00000i 0.0882162i
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) −48.0000 −2.11104
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 4.00000i 0.175412i
\(521\) −34.0000 −1.48957 −0.744784 0.667306i \(-0.767447\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 12.0000i 0.524222i
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 16.0000i 0.694996i
\(531\) 0 0
\(532\) 4.00000i 0.173422i
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 28.0000 1.21055
\(536\) 4.00000i 0.172774i
\(537\) 0 0
\(538\) 14.0000 0.603583
\(539\) 4.00000i 0.172292i
\(540\) 0 0
\(541\) 32.0000i 1.37579i −0.725811 0.687894i \(-0.758536\pi\)
0.725811 0.687894i \(-0.241464\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) −20.0000 8.00000i −0.852029 0.340811i
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 20.0000i 0.843649i
\(563\) 20.0000i 0.842900i −0.906852 0.421450i \(-0.861521\pi\)
0.906852 0.421450i \(-0.138479\pi\)
\(564\) 0 0
\(565\) 4.00000i 0.168281i
\(566\) 12.0000i 0.504398i
\(567\) 0 0
\(568\) 2.00000i 0.0839181i
\(569\) 6.00000i 0.251533i 0.992060 + 0.125767i \(0.0401390\pi\)
−0.992060 + 0.125767i \(0.959861\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 8.00000i 0.334497i
\(573\) 0 0
\(574\) 2.00000 0.0834784
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 4.00000 10.0000i 0.166091 0.415227i
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 32.0000i 1.32530i
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 22.0000 0.908812
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 16.0000i 0.658710i
\(591\) 0 0
\(592\) 4.00000i 0.164399i
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 4.00000i 0.163984i
\(596\) 0 0
\(597\) 0 0
\(598\) 12.0000i 0.490716i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 30.0000i 1.22373i 0.790964 + 0.611863i \(0.209580\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(602\) −6.00000 −0.244542
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 10.0000 0.406558
\(606\) 0 0
\(607\) 28.0000i 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 4.00000 0.161955
\(611\) 24.0000i 0.970936i
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 24.0000 0.968561
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) 26.0000i 1.04672i 0.852111 + 0.523360i \(0.175322\pi\)
−0.852111 + 0.523360i \(0.824678\pi\)
\(618\) 0 0
\(619\) 44.0000i 1.76851i 0.467005 + 0.884255i \(0.345333\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(620\) 8.00000i 0.321288i
\(621\) 0 0
\(622\) 0 0
\(623\) 2.00000i 0.0801283i
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 14.0000i 0.559553i
\(627\) 0 0
\(628\) 18.0000i 0.718278i
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −10.0000 −0.397779
\(633\) 0 0
\(634\) −14.0000 −0.556011
\(635\) 36.0000i 1.42862i
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −8.00000 + 20.0000i −0.316723 + 0.791808i
\(639\) 0 0
\(640\) 2.00000i 0.0790569i
\(641\) 30.0000i 1.18493i 0.805597 + 0.592464i \(0.201845\pi\)
−0.805597 + 0.592464i \(0.798155\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 6.00000 0.236433
\(645\) 0 0
\(646\) 8.00000i 0.314756i
\(647\) −28.0000 −1.10079 −0.550397 0.834903i \(-0.685524\pi\)
−0.550397 + 0.834903i \(0.685524\pi\)
\(648\) 0 0
\(649\) 32.0000i 1.25611i
\(650\) 2.00000i 0.0784465i
\(651\) 0 0
\(652\) 10.0000i 0.391630i
\(653\) 6.00000i 0.234798i 0.993085 + 0.117399i \(0.0374557\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(654\) 0 0
\(655\) 24.0000i 0.937758i
\(656\) 2.00000i 0.0780869i
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) 28.0000i 1.09073i 0.838200 + 0.545363i \(0.183608\pi\)
−0.838200 + 0.545363i \(0.816392\pi\)
\(660\) 0 0
\(661\) −26.0000 −1.01128 −0.505641 0.862744i \(-0.668744\pi\)
−0.505641 + 0.862744i \(0.668744\pi\)
\(662\) −10.0000 −0.388661
\(663\) 0 0
\(664\) 16.0000i 0.620920i
\(665\) 8.00000i 0.310227i
\(666\) 0 0
\(667\) 12.0000 30.0000i 0.464642 1.16160i
\(668\) 0 0
\(669\) 0 0
\(670\) 8.00000i 0.309067i
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 28.0000 1.07852
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) 0 0
\(679\) 10.0000i 0.383765i
\(680\) 4.00000 0.153393
\(681\) 0 0
\(682\) 16.0000i 0.612672i
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) 0 0
\(685\) 12.0000i 0.458496i
\(686\) 1.00000i 0.0381802i
\(687\) 0 0
\(688\) 6.00000i 0.228748i
\(689\) 16.0000 0.609551
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) 6.00000i 0.227757i
\(695\) 40.0000 1.51729
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 10.0000i 0.378506i
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) −36.0000 −1.35970 −0.679851 0.733351i \(-0.737955\pi\)
−0.679851 + 0.733351i \(0.737955\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 4.00000i 0.150756i
\(705\) 0 0
\(706\) 18.0000i 0.677439i
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) 46.0000 1.72757 0.863783 0.503864i \(-0.168089\pi\)
0.863783 + 0.503864i \(0.168089\pi\)
\(710\) 4.00000i 0.150117i
\(711\) 0 0
\(712\) 2.00000 0.0749532
\(713\) 24.0000i 0.898807i
\(714\) 0 0
\(715\) 16.0000i 0.598366i
\(716\) −18.0000 −0.672692
\(717\) 0 0
\(718\) −16.0000 −0.597115
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) 10.0000 0.371647
\(725\) −2.00000 + 5.00000i −0.0742781 + 0.185695i
\(726\) 0 0
\(727\) 24.0000i 0.890111i −0.895503 0.445055i \(-0.853184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(728\) 2.00000i 0.0741249i
\(729\) 0 0
\(730\) 20.0000 0.740233
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) 42.0000i 1.55131i −0.631160 0.775653i \(-0.717421\pi\)
0.631160 0.775653i \(-0.282579\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) 6.00000i 0.221163i
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 30.0000i 1.10357i −0.833987 0.551784i \(-0.813947\pi\)
0.833987 0.551784i \(-0.186053\pi\)
\(740\) 8.00000i 0.294086i
\(741\) 0 0
\(742\) 8.00000i 0.293689i
\(743\) 8.00000i 0.293492i 0.989174 + 0.146746i \(0.0468799\pi\)
−0.989174 + 0.146746i \(0.953120\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.0000i 0.366126i
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 14.0000 0.511549
\(750\) 0 0
\(751\) 34.0000i 1.24068i 0.784334 + 0.620339i \(0.213005\pi\)
−0.784334 + 0.620339i \(0.786995\pi\)
\(752\) 12.0000i 0.437595i
\(753\) 0 0
\(754\) −10.0000 4.00000i −0.364179 0.145671i
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) 4.00000i 0.145382i −0.997354 0.0726912i \(-0.976841\pi\)
0.997354 0.0726912i \(-0.0231588\pi\)
\(758\) −34.0000 −1.23494
\(759\) 0 0
\(760\) −8.00000 −0.290191
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) 18.0000 0.651644
\(764\) 24.0000i 0.868290i
\(765\) 0 0
\(766\) 12.0000i 0.433578i
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) 26.0000i 0.937584i 0.883309 + 0.468792i \(0.155311\pi\)
−0.883309 + 0.468792i \(0.844689\pi\)
\(770\) −8.00000 −0.288300
\(771\) 0 0
\(772\) 8.00000i 0.287926i
\(773\) 34.0000i 1.22290i −0.791285 0.611448i \(-0.790588\pi\)
0.791285 0.611448i \(-0.209412\pi\)
\(774\) 0 0
\(775\) 4.00000i 0.143684i
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) 8.00000i 0.286263i
\(782\) 12.0000 0.429119
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 36.0000i 1.28490i
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 8.00000 0.284988
\(789\) 0 0
\(790\) −20.0000 −0.711568
\(791\) 2.00000i 0.0711118i
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 30.0000i 1.06466i
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 22.0000i 0.779280i −0.920967 0.389640i \(-0.872599\pi\)
0.920967 0.389640i \(-0.127401\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 20.0000i 0.706225i
\(803\) −40.0000 −1.41157
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 10.0000i 0.351581i −0.984428 0.175791i \(-0.943752\pi\)
0.984428 0.175791i \(-0.0562482\pi\)
\(810\) 0 0
\(811\) 24.0000 0.842754 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(812\) 2.00000 5.00000i 0.0701862 0.175466i
\(813\) 0 0
\(814\) 16.0000i 0.560800i
\(815\) 20.0000i 0.700569i
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 2.00000 0.0699284
\(819\) 0 0
\(820\) 4.00000i 0.139686i
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 2.00000i 0.0697156i −0.999392 0.0348578i \(-0.988902\pi\)
0.999392 0.0348578i \(-0.0110978\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 8.00000i 0.278356i
\(827\) 12.0000i 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) 22.0000i 0.764092i −0.924143 0.382046i \(-0.875220\pi\)
0.924143 0.382046i \(-0.124780\pi\)
\(830\) 32.0000i 1.11074i
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 2.00000i 0.0692959i
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) 36.0000i 1.24360i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −21.0000 20.0000i −0.724138 0.689655i
\(842\) −8.00000 −0.275698
\(843\) 0 0
\(844\) 10.0000i 0.344214i
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 8.00000 0.274721
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) 24.0000i 0.822709i
\(852\) 0 0
\(853\) 22.0000i 0.753266i 0.926363 + 0.376633i \(0.122918\pi\)
−0.926363 + 0.376633i \(0.877082\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) 14.0000i 0.478510i
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 40.0000i 1.36478i −0.730987 0.682391i \(-0.760940\pi\)
0.730987 0.682391i \(-0.239060\pi\)
\(860\) 12.0000i 0.409197i
\(861\) 0 0
\(862\) 22.0000i 0.749323i
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) −34.0000 −1.15537
\(867\) 0 0
\(868\) 4.00000i 0.135769i
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 18.0000i 0.609557i
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) 46.0000 1.55331 0.776655 0.629926i \(-0.216915\pi\)
0.776655 + 0.629926i \(0.216915\pi\)
\(878\) 36.0000i 1.21494i
\(879\) 0 0
\(880\) 8.00000i 0.269680i
\(881\) 22.0000i 0.741199i 0.928793 + 0.370599i \(0.120848\pi\)
−0.928793 + 0.370599i \(0.879152\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 4.00000i 0.134535i
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 48.0000i 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 4.00000 0.134080
\(891\) 0 0
\(892\) 12.0000 0.401790
\(893\) −48.0000 −1.60626
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 1.00000i 0.0334077i
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 20.0000 + 8.00000i 0.667037 + 0.266815i
\(900\) 0 0
\(901\) 16.0000i 0.533037i
\(902\) 8.00000i 0.266371i
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) 10.0000i 0.332045i −0.986122 0.166022i \(-0.946908\pi\)
0.986122 0.166022i \(-0.0530924\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 4.00000i 0.132599i
\(911\) 48.0000i 1.59031i −0.606406 0.795155i \(-0.707389\pi\)
0.606406 0.795155i \(-0.292611\pi\)
\(912\) 0 0
\(913\) 64.0000i 2.11809i
\(914\) 18.0000i 0.595387i
\(915\) 0 0
\(916\) 18.0000i 0.594737i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 12.0000i 0.395628i
\(921\) 0 0
\(922\) −14.0000 −0.461065
\(923\) −4.00000 −0.131662
\(924\) 0 0
\(925\) 4.00000i 0.131519i
\(926\) 32.0000i 1.05159i
\(927\) 0 0
\(928\) −5.00000 2.00000i −0.164133 0.0656532i
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) 4.00000i 0.131095i
\(932\) −20.0000 −0.655122
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 4.00000i 0.130605i
\(939\) 0 0
\(940\) 24.0000i 0.782794i
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 12.0000i 0.390774i
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 24.0000i 0.780307i
\(947\) 12.0000i 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) 20.0000i 0.649227i
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 0 0
\(955\) 48.0000i 1.55324i
\(956\) 30.0000 0.970269
\(957\) 0 0
\(958\) −4.00000 −0.129234
\(959\) 6.00000i 0.193750i
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 8.00000 0.257930
\(963\) 0 0
\(964\) −22.0000 −0.708572
\(965\) 16.0000i 0.515058i
\(966\) 0 0
\(967\) 34.0000i 1.09337i −0.837340 0.546683i \(-0.815890\pi\)
0.837340 0.546683i \(-0.184110\pi\)
\(968\) 5.00000i 0.160706i
\(969\) 0 0
\(970\) 20.0000 0.642161
\(971\) 40.0000i 1.28366i −0.766846 0.641831i \(-0.778175\pi\)
0.766846 0.641831i \(-0.221825\pi\)
\(972\) 0 0
\(973\) 20.0000 0.641171
\(974\) 32.0000i 1.02535i
\(975\) 0 0
\(976\) 2.00000i 0.0640184i
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 2.00000 0.0638877
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 52.0000i 1.65854i −0.558846 0.829271i \(-0.688756\pi\)
0.558846 0.829271i \(-0.311244\pi\)
\(984\) 0 0
\(985\) 16.0000 0.509802
\(986\) 4.00000 10.0000i 0.127386 0.318465i
\(987\) 0 0
\(988\) 8.00000i 0.254514i
\(989\) 36.0000i 1.14473i
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 2.00000i 0.0634361i
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 10.0000i 0.316703i −0.987383 0.158352i \(-0.949382\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 12.0000i 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.g.b.2899.1 2
3.2 odd 2 3654.2.g.g.2899.2 yes 2
29.28 even 2 inner 3654.2.g.b.2899.2 yes 2
87.86 odd 2 3654.2.g.g.2899.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3654.2.g.b.2899.1 2 1.1 even 1 trivial
3654.2.g.b.2899.2 yes 2 29.28 even 2 inner
3654.2.g.g.2899.1 yes 2 87.86 odd 2
3654.2.g.g.2899.2 yes 2 3.2 odd 2