Properties

Label 3654.2.g
Level $3654$
Weight $2$
Character orbit 3654.g
Rep. character $\chi_{3654}(2899,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $19$
Sturm bound $1440$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(1440\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3654, [\chi])\).

Total New Old
Modular forms 736 76 660
Cusp forms 704 76 628
Eisenstein series 32 0 32

Trace form

\( 76 q - 76 q^{4} - 16 q^{13} + 76 q^{16} - 4 q^{22} - 8 q^{23} + 56 q^{25} - 20 q^{29} - 24 q^{34} - 4 q^{35} - 4 q^{38} + 76 q^{49} + 16 q^{52} + 4 q^{53} - 8 q^{58} + 4 q^{59} - 20 q^{62} - 76 q^{64} - 60 q^{65}+ \cdots + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3654, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3654.2.g.a 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 1218.2.g.e \(0\) \(0\) \(-8\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{4}-4 q^{5}+q^{7}-i q^{8}+\cdots\)
3654.2.g.b 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 3654.2.g.b \(0\) \(0\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-q^{4}-2 q^{5}-q^{7}+i q^{8}+\cdots\)
3654.2.g.c 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 1218.2.g.d \(0\) \(0\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-q^{4}-2 q^{5}+q^{7}+i q^{8}+\cdots\)
3654.2.g.d 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 406.2.c.a \(0\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{4}-q^{5}+q^{7}-i q^{8}+\cdots\)
3654.2.g.e 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 1218.2.g.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-q^{4}-q^{7}+i q^{8}-4 i q^{11}+\cdots\)
3654.2.g.f 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 1218.2.g.c \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{4}-q^{7}-i q^{8}-3 i q^{11}+\cdots\)
3654.2.g.g 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 3654.2.g.b \(0\) \(0\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-q^{4}+2 q^{5}-q^{7}+i q^{8}+\cdots\)
3654.2.g.h 3654.g 29.b $2$ $29.177$ \(\Q(\sqrt{-1}) \) None 1218.2.g.a \(0\) \(0\) \(8\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-q^{4}+4 q^{5}+q^{7}+i q^{8}+\cdots\)
3654.2.g.i 3654.g 29.b $4$ $29.177$ \(\Q(i, \sqrt{33})\) None 3654.2.g.i \(0\) \(0\) \(-8\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-q^{4}-2q^{5}+q^{7}+\beta _{2}q^{8}+\cdots\)
3654.2.g.j 3654.g 29.b $4$ $29.177$ \(\Q(i, \sqrt{5})\) None 1218.2.g.h \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{4}+(-1+\beta _{3})q^{5}+q^{7}+\cdots\)
3654.2.g.k 3654.g 29.b $4$ $29.177$ \(\Q(i, \sqrt{57})\) None 1218.2.g.g \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-q^{4}+q^{7}+\beta _{2}q^{8}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
3654.2.g.l 3654.g 29.b $4$ $29.177$ \(\Q(i, \sqrt{7})\) None 1218.2.g.f \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{4}+(1-\beta _{2})q^{5}-q^{7}-\beta _{1}q^{8}+\cdots\)
3654.2.g.m 3654.g 29.b $4$ $29.177$ \(\Q(i, \sqrt{33})\) None 3654.2.g.i \(0\) \(0\) \(8\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-q^{4}+2q^{5}+q^{7}-\beta _{2}q^{8}+\cdots\)
3654.2.g.n 3654.g 29.b $6$ $29.177$ 6.0.16516096.2 None 3654.2.g.n \(0\) \(0\) \(-12\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-q^{4}-2q^{5}-q^{7}+\beta _{1}q^{8}+\cdots\)
3654.2.g.o 3654.g 29.b $6$ $29.177$ 6.0.399424.1 None 1218.2.g.i \(0\) \(0\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-q^{4}+(1+\beta _{1}+\beta _{3})q^{5}-q^{7}+\cdots\)
3654.2.g.p 3654.g 29.b $6$ $29.177$ 6.0.2611456.1 None 406.2.c.b \(0\) \(0\) \(8\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-q^{4}+(1-\beta _{2})q^{5}+q^{7}-\beta _{3}q^{8}+\cdots\)
3654.2.g.q 3654.g 29.b $6$ $29.177$ 6.0.16516096.2 None 3654.2.g.n \(0\) \(0\) \(12\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-q^{4}+2q^{5}-q^{7}+\beta _{1}q^{8}+\cdots\)
3654.2.g.r 3654.g 29.b $8$ $29.177$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 406.2.c.c \(0\) \(0\) \(-6\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-q^{4}+(-1-\beta _{2}+\beta _{6})q^{5}+\cdots\)
3654.2.g.s 3654.g 29.b $8$ $29.177$ 8.0.12960000.1 None 3654.2.g.s \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-q^{4}-\beta _{2}q^{5}+q^{7}+\beta _{1}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3654, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3654, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(174, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(203, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(406, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(522, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(609, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1218, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1827, [\chi])\)\(^{\oplus 2}\)