Defining parameters
Level: | \( N \) | \(=\) | \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3654.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(1440\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3654, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 736 | 76 | 660 |
Cusp forms | 704 | 76 | 628 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3654, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(3654, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3654, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(174, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(203, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(406, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(522, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(609, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1218, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1827, [\chi])\)\(^{\oplus 2}\)