Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 46 x^{2} + 961 x^{4}$ |
Frobenius angles: | $\pm0.116954024641$, $\pm0.883045975359$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $40$ |
Isomorphism classes: | 46 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $916$ | $839056$ | $887538964$ | $852534595584$ | $819628336307476$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $870$ | $29792$ | $923134$ | $28629152$ | $887574246$ | $27512614112$ | $852894656254$ | $26439622160672$ | $819628385634150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=16 x^6+17 x^5+11 x^4+22 x^2+25 x+4$
- $y^2=3 x^6+5 x^5+17 x^4+22 x^3+18 x^2+7 x+7$
- $y^2=5 x^6+11 x^5+25 x^4+21 x^3+22 x^2+17 x+13$
- $y^2=9 x^6+24 x^5+23 x^4+7 x^3+8 x^2+24 x+22$
- $y^2=13 x^6+23 x^5+22 x^4+22 x^3+20 x^2+29 x+10$
- $y^2=9 x^6+25 x^5+7 x^4+22 x^3+15 x^2+26 x+22$
- $y^2=27 x^6+13 x^5+21 x^4+4 x^3+14 x^2+16 x+4$
- $y^2=30 x^6+13 x^5+30 x^4+22 x^3+25 x^2+3 x+1$
- $y^2=24 x^6+5 x^5+23 x^4+29 x^3+5 x^2+x+15$
- $y^2=28 x^6+14 x^5+21 x^4+5 x^3+9 x^2+23 x+24$
- $y^2=21 x^6+12 x^5+17 x^4+13 x^2+8 x+13$
- $y^2=28 x^6+26 x^5+12 x^4+24 x^3+7 x^2+11 x+24$
- $y^2=x^6+30 x^5+23 x^4+18 x^3+25 x^2+13 x+29$
- $y^2=15 x^6+23 x^5+23 x^4+12 x^2+18 x+23$
- $y^2=10 x^6+29 x^5+19 x^4+20 x^3+17 x^2+28 x+7$
- $y^2=30 x^6+25 x^5+26 x^4+29 x^3+20 x^2+22 x+21$
- $y^2=19 x^6+2 x^5+x^4+29 x^3+30 x^2+10 x+6$
- $y^2=26 x^6+6 x^5+3 x^4+25 x^3+28 x^2+30 x+18$
- $y^2=12 x^5+17 x^4+28 x^3+4 x^2+13 x$
- $y^2=24 x^6+7 x^5+15 x^4+20 x^3+11 x^2+21 x+18$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.abu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.