| L(s) = 1 | + 2·2-s + 2·4-s + 4·5-s + 6·9-s + 8·10-s − 10·13-s − 4·16-s + 2·17-s + 12·18-s + 8·20-s + 11·25-s − 20·26-s + 6·29-s − 8·32-s + 4·34-s + 12·36-s − 18·41-s + 24·45-s + 14·49-s + 22·50-s − 20·52-s + 10·53-s + 12·58-s − 2·61-s − 8·64-s − 40·65-s + 4·68-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s + 1.78·5-s + 2·9-s + 2.52·10-s − 2.77·13-s − 16-s + 0.485·17-s + 2.82·18-s + 1.78·20-s + 11/5·25-s − 3.92·26-s + 1.11·29-s − 1.41·32-s + 0.685·34-s + 2·36-s − 2.81·41-s + 3.57·45-s + 2·49-s + 3.11·50-s − 2.77·52-s + 1.37·53-s + 1.57·58-s − 0.256·61-s − 64-s − 4.96·65-s + 0.485·68-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.528555605\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.528555605\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21865394629368533184480610926, −11.69431373428469232181807142007, −10.61457869549460501572686219746, −10.08438922984808083876834747440, −10.05579916893730978642107876863, −9.894617985312893775373921855865, −8.933504899168652619661294375062, −8.839342633340608358796285506442, −7.58590952706957762838451471840, −7.18857007012695378858377860522, −6.96954690119841036969558048922, −6.34249079861059558868101757174, −5.79533000359576900647538228805, −5.03612993325664126270226211589, −4.96073291594366195872110422111, −4.46957914806854771484456401131, −3.64140717969400077208659671047, −2.68893858100097238984954980283, −2.31027450024773564066264643361, −1.50088273099326648897544736405,
1.50088273099326648897544736405, 2.31027450024773564066264643361, 2.68893858100097238984954980283, 3.64140717969400077208659671047, 4.46957914806854771484456401131, 4.96073291594366195872110422111, 5.03612993325664126270226211589, 5.79533000359576900647538228805, 6.34249079861059558868101757174, 6.96954690119841036969558048922, 7.18857007012695378858377860522, 7.58590952706957762838451471840, 8.839342633340608358796285506442, 8.933504899168652619661294375062, 9.894617985312893775373921855865, 10.05579916893730978642107876863, 10.08438922984808083876834747440, 10.61457869549460501572686219746, 11.69431373428469232181807142007, 12.21865394629368533184480610926