Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.250000000000$, $\pm0.750000000000$ |
| Angle rank: | $0$ (numerical) |
| Number field: | \(\Q(i, \sqrt{142})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $73$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5042$ | $25421764$ | $128100283922$ | $646266084871696$ | $3255243551009881202$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5042$ | $357912$ | $25431846$ | $1804229352$ | $128100283922$ | $9095120158392$ | $645753429599038$ | $45848500718449032$ | $3255243551009881202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 73 curves (of which all are hyperelliptic):
- $y^2=58 x^6+15 x^5+50 x^4+61 x^3+x^2+16 x+37$
- $y^2=51 x^6+34 x^5+66 x^4+x^3+7 x^2+41 x+46$
- $y^2=55 x^6+67 x^5+9 x^4+18 x^3+27 x^2+20 x+9$
- $y^2=30 x^6+43 x^5+63 x^4+55 x^3+47 x^2+69 x+63$
- $y^2=62 x^6+44 x^5+33 x^4+49 x^3+8 x^2+61 x+67$
- $y^2=8 x^6+24 x^5+18 x^4+59 x^3+56 x^2+x+43$
- $y^2=51 x^6+6 x^5+66 x^4+66 x^3+62 x^2+10 x+21$
- $y^2=2 x^6+42 x^5+36 x^4+36 x^3+8 x^2+70 x+5$
- $y^2=24 x^6+35 x^5+52 x^4+10 x^3+12 x^2+53 x+41$
- $y^2=26 x^6+32 x^5+9 x^4+70 x^3+13 x^2+16 x+3$
- $y^2=58 x^6+47 x^5+69 x^4+35 x^3+30 x^2+17 x+6$
- $y^2=51 x^6+45 x^5+57 x^4+32 x^3+68 x^2+48 x+42$
- $y^2=3 x^6+15 x^5+45 x^4+15 x^3+12 x^2+55 x+39$
- $y^2=21 x^6+34 x^5+31 x^4+34 x^3+13 x^2+30 x+60$
- $y^2=50 x^6+7 x^5+4 x^4+2 x^3+11 x^2+15 x+8$
- $y^2=66 x^6+49 x^5+28 x^4+14 x^3+6 x^2+34 x+56$
- $y^2=x^6+10 x^5+5 x^4+11 x^3+50 x^2+41 x+9$
- $y^2=55 x^6+65 x^5+48 x^4+28 x^3+3 x^2+5 x+20$
- $y^2=30 x^6+29 x^5+52 x^4+54 x^3+21 x^2+35 x+69$
- $y^2=12 x^6+65 x^5+47 x^4+15 x^3+42 x^2+3 x+4$
- and 53 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{4}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{142})\). |
| The base change of $A$ to $\F_{71^{4}}$ is 1.25411681.oxu 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $71$ and $\infty$. |
- Endomorphism algebra over $\F_{71^{2}}$
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
Base change
This is a primitive isogeny class.