Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 29 x^{2} )( 1 + 4 x + 29 x^{2} )$ |
| $1 - 6 x + 18 x^{2} - 174 x^{3} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.121118941591$, $\pm0.621118941591$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $41$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $680$ | $707200$ | $584811560$ | $500131840000$ | $420943464967400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $842$ | $23976$ | $707118$ | $20522664$ | $594823322$ | $17249988696$ | $500249228638$ | $14507151163704$ | $420707233300202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 41 curves (of which all are hyperelliptic):
- $y^2=18 x^6+x^5+5 x^4+25 x^3+18 x^2+16 x+8$
- $y^2=27 x^6+16 x^5+4 x^4+6 x^3+13 x^2+5 x+27$
- $y^2=x^5+27 x^4+x^3+3 x^2+18 x+20$
- $y^2=12 x^6+3 x^5+20 x^4+21 x^3+20 x^2+3 x+12$
- $y^2=27 x^6+27 x^5+28 x^4+27 x^3+16 x^2+25 x$
- $y^2=15 x^6+27 x^5+26 x^4+16 x^3+24 x^2+10 x+10$
- $y^2=26 x^6+13 x^5+5 x^4+26 x^3+24 x^2+18 x$
- $y^2=12 x^6+9 x^5+13 x^4+23 x^3+28 x^2+19 x+13$
- $y^2=21 x^6+15 x^4+3 x^3+6 x+2$
- $y^2=10 x^6+18 x^5+12 x^4+11 x^3+23 x^2+26 x+13$
- $y^2=20 x^6+28 x^5+19 x^4+18 x^3+14 x^2+13 x+3$
- $y^2=12 x^6+x^5+19 x^4+19 x^3+17 x^2+11 x+8$
- $y^2=10 x^6+28 x^5+21 x^4+17 x^3+15 x^2+22 x+17$
- $y^2=27 x^6+12 x^5+27 x^4+8 x^3+6 x^2+7 x+26$
- $y^2=x^5+6 x^4+5 x^3+26 x^2+19 x+8$
- $y^2=26 x^6+16 x^5+11 x^4+19 x^3+10 x^2+8 x+6$
- $y^2=5 x^6+9 x^5+28 x^4+7 x^3+28 x^2+9 x+5$
- $y^2=11 x^6+27 x^5+4 x^4+22 x^3+7 x^2+7 x+5$
- $y^2=10 x^6+19 x^3+14 x^2+27 x+14$
- $y^2=21 x^6+6 x^5+27 x^4+27 x^2+23 x+21$
- and 21 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{4}}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.ak $\times$ 1.29.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{29^{4}}$ is 1.707281.ade 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{29^{2}}$
The base change of $A$ to $\F_{29^{2}}$ is 1.841.abq $\times$ 1.841.bq. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.