Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.250000000000$, $\pm0.750000000000$ |
| Angle rank: | $0$ (numerical) |
| Number field: | \(\Q(i, \sqrt{158})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $163$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6242$ | $38962564$ | $243087455522$ | $1518081393454096$ | $9468276082626847202$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6242$ | $493040$ | $38975046$ | $3077056400$ | $243087455522$ | $19203908986160$ | $1517108654106238$ | $119851595982618320$ | $9468276082626847202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 163 curves (of which all are hyperelliptic):
- $y^2=68 x^5+23 x^4+70 x^3+x^2+43 x+34$
- $y^2=46 x^5+69 x^4+52 x^3+3 x^2+50 x+23$
- $y^2=66 x^6+73 x^5+38 x^4+48 x^3+10 x^2+25 x+12$
- $y^2=40 x^6+61 x^5+35 x^4+65 x^3+30 x^2+75 x+36$
- $y^2=4 x^6+3 x^5+76 x^4+36 x^3+18 x^2+53 x+21$
- $y^2=12 x^6+9 x^5+70 x^4+29 x^3+54 x^2+x+63$
- $y^2=21 x^6+33 x^5+43 x^4+25 x^3+22 x^2+60 x+13$
- $y^2=63 x^6+20 x^5+50 x^4+75 x^3+66 x^2+22 x+39$
- $y^2=71 x^6+14 x^5+61 x^4+6 x^3+44 x^2+32 x+53$
- $y^2=55 x^6+42 x^5+25 x^4+18 x^3+53 x^2+17 x+1$
- $y^2=57 x^5+44 x^4+36 x^3+9 x^2+17 x+10$
- $y^2=13 x^5+53 x^4+29 x^3+27 x^2+51 x+30$
- $y^2=19 x^6+22 x^5+59 x^4+52 x^3+72 x^2+78 x+48$
- $y^2=57 x^6+66 x^5+19 x^4+77 x^3+58 x^2+76 x+65$
- $y^2=31 x^6+55 x^5+58 x^4+42 x^3+54 x^2+3 x+75$
- $y^2=14 x^6+7 x^5+16 x^4+47 x^3+4 x^2+9 x+67$
- $y^2=71 x^6+64 x^5+66 x^4+55 x^3+36 x^2+18 x+70$
- $y^2=55 x^6+34 x^5+40 x^4+7 x^3+29 x^2+54 x+52$
- $y^2=47 x^6+33 x^5+78 x^4+62 x^3+57 x^2+58 x+50$
- $y^2=62 x^6+20 x^5+76 x^4+28 x^3+13 x^2+16 x+71$
- and 143 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{4}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{158})\). |
| The base change of $A$ to $\F_{79^{4}}$ is 1.38950081.smc 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $79$ and $\infty$. |
- Endomorphism algebra over $\F_{79^{2}}$
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
Base change
This is a primitive isogeny class.