Properties

Label 2.53.ak_by
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 14 x + 53 x^{2} )( 1 + 4 x + 53 x^{2} )$
  $1 - 10 x + 50 x^{2} - 530 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.0885855327829$, $\pm0.588585532783$
Angle rank:  $1$ (numerical)
Jacobians:  $137$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2320$ $7888000$ $22002678160$ $62220544000000$ $174901250449891600$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $44$ $2810$ $147788$ $7885518$ $418228444$ $22164361130$ $1174709923228$ $62259709652638$ $3299763752488844$ $174887470365513050$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 137 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53^{4}}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ao $\times$ 1.53.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{53}$
The base change of $A$ to $\F_{53^{4}}$ is 1.7890481.adrm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.as_gg$2$(not in LMFDB)
2.53.k_by$2$(not in LMFDB)
2.53.s_gg$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.as_gg$2$(not in LMFDB)
2.53.k_by$2$(not in LMFDB)
2.53.s_gg$2$(not in LMFDB)
2.53.abc_lq$4$(not in LMFDB)
2.53.ai_es$4$(not in LMFDB)
2.53.a_adm$4$(not in LMFDB)
2.53.a_dm$4$(not in LMFDB)
2.53.i_es$4$(not in LMFDB)
2.53.bc_lq$4$(not in LMFDB)
2.53.a_ace$8$(not in LMFDB)
2.53.a_ce$8$(not in LMFDB)
2.53.ao_fn$12$(not in LMFDB)
2.53.ae_abl$12$(not in LMFDB)
2.53.e_abl$12$(not in LMFDB)
2.53.o_fn$12$(not in LMFDB)