Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 53 x^{2} )( 1 + 4 x + 53 x^{2} )$ |
| $1 - 10 x + 50 x^{2} - 530 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.0885855327829$, $\pm0.588585532783$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $137$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2320$ | $7888000$ | $22002678160$ | $62220544000000$ | $174901250449891600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $2810$ | $147788$ | $7885518$ | $418228444$ | $22164361130$ | $1174709923228$ | $62259709652638$ | $3299763752488844$ | $174887470365513050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 137 curves (of which all are hyperelliptic):
- $y^2=46 x^6+17 x^5+36 x^4+3 x^3+36 x^2+17 x+46$
- $y^2=26 x^6+x^5+14 x^4+43 x^3+29 x^2+18 x+29$
- $y^2=24 x^6+x^5+33 x^4+46 x^3+4 x^2+37 x+23$
- $y^2=3 x^6+16 x^5+4 x^4+45 x^3+34 x^2+49 x+34$
- $y^2=8 x^6+23 x^5+29 x^4+3 x^3+50 x^2+21 x+8$
- $y^2=17 x^6+44 x^5+37 x^4+39 x^3+7 x^2+46 x+30$
- $y^2=43 x^6+2 x^5+43 x^4+15 x^3+17 x^2+13 x+14$
- $y^2=40 x^6+17 x^5+8 x^4+45 x^3+45 x^2+40 x+13$
- $y^2=28 x^6+10 x^5+8 x^4+36 x^3+43 x^2+49 x+43$
- $y^2=27 x^6+23 x^5+37 x^4+26 x^3+5 x^2+52 x$
- $y^2=7 x^6+27 x^5+19 x^4+8 x^3+38 x^2+31 x+24$
- $y^2=9 x^6+30 x^4+6 x^3+9 x^2+5 x+21$
- $y^2=22 x^6+5 x^5+4 x^4+4 x^2+48 x+22$
- $y^2=48 x^6+19 x^5+26 x^4+6 x^3+34 x^2+18 x+2$
- $y^2=5 x^6+49 x^5+46 x^4+33 x^3+12 x^2+10 x+45$
- $y^2=7 x^6+47 x^5+15 x^4+22 x^3+29 x^2+30 x+26$
- $y^2=15 x^6+47 x^5+11 x^4+48 x^3+25 x^2+3 x+4$
- $y^2=36 x^6+x^5+20 x^4+43 x^3+20 x^2+27 x+32$
- $y^2=43 x^6+50 x^5+8 x^4+39 x^3+3 x^2+34 x+38$
- $y^2=x^6+46 x^5+49 x^4+25 x^3+49 x^2+46 x+1$
- and 117 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{4}}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ao $\times$ 1.53.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{53^{4}}$ is 1.7890481.adrm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{53^{2}}$
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.adm $\times$ 1.2809.dm. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.