| L(s) = 1 | + 2·2-s − 2·3-s + 4-s − 2·5-s − 4·6-s + 4·7-s + 3·9-s − 4·10-s − 2·12-s + 8·13-s + 8·14-s + 4·15-s + 16-s − 8·17-s + 6·18-s + 2·19-s − 2·20-s − 8·21-s + 4·23-s + 3·25-s + 16·26-s − 4·27-s + 4·28-s − 4·29-s + 8·30-s − 4·31-s − 2·32-s + ⋯ |
| L(s) = 1 | + 1.41·2-s − 1.15·3-s + 1/2·4-s − 0.894·5-s − 1.63·6-s + 1.51·7-s + 9-s − 1.26·10-s − 0.577·12-s + 2.21·13-s + 2.13·14-s + 1.03·15-s + 1/4·16-s − 1.94·17-s + 1.41·18-s + 0.458·19-s − 0.447·20-s − 1.74·21-s + 0.834·23-s + 3/5·25-s + 3.13·26-s − 0.769·27-s + 0.755·28-s − 0.742·29-s + 1.46·30-s − 0.718·31-s − 0.353·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.082571214\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.082571214\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.94422651748311600022830476308, −11.52499868984857256751197083355, −11.10329910737413387041482926454, −11.07373818285000871114656988342, −10.76851606133144051168658296443, −9.895306648110656728687637429620, −8.927391779320616342134129825796, −8.780432841597661212279461053054, −8.165941696646063731713821037254, −7.59207325691769332581278216658, −6.96848280434509019490203487705, −6.56302654898553469937207572746, −5.74205691389279477949312162713, −5.48498184650769896560590443491, −4.67595605683700315639815054953, −4.61747116333653192293579041578, −3.82041776524910840198178033245, −3.61823027123933242237126070482, −2.08829373944119483464532167414, −1.06457276340249043064631230540,
1.06457276340249043064631230540, 2.08829373944119483464532167414, 3.61823027123933242237126070482, 3.82041776524910840198178033245, 4.61747116333653192293579041578, 4.67595605683700315639815054953, 5.48498184650769896560590443491, 5.74205691389279477949312162713, 6.56302654898553469937207572746, 6.96848280434509019490203487705, 7.59207325691769332581278216658, 8.165941696646063731713821037254, 8.780432841597661212279461053054, 8.927391779320616342134129825796, 9.895306648110656728687637429620, 10.76851606133144051168658296443, 11.07373818285000871114656988342, 11.10329910737413387041482926454, 11.52499868984857256751197083355, 11.94422651748311600022830476308