Properties

Label 2.2.ac_d
Base Field $\F_{2}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 3 x^{2} - 4 x^{3} + 4 x^{4}$
Frobenius angles:  $\pm0.174442860055$, $\pm0.546783656212$
Angle rank:  $2$ (numerical)
Number field:  4.0.1088.2
Galois group:  $D_{4}$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 28 62 224 1762 6076 16046 65408 280178 1011388

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 7 7 15 51 91 127 255 547 987

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 4.0.1088.2.
All geometric endomorphisms are defined over $\F_{2}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.2.c_d$2$2.4.c_b