L(s) = 1 | + 4·9-s − 10·25-s − 16·31-s − 16·37-s − 6·41-s − 8·43-s − 4·49-s − 24·59-s − 4·61-s − 8·73-s + 7·81-s + 24·83-s + 32·103-s − 24·107-s + 24·113-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + ⋯ |
L(s) = 1 | + 4/3·9-s − 2·25-s − 2.87·31-s − 2.63·37-s − 0.937·41-s − 1.21·43-s − 4/7·49-s − 3.12·59-s − 0.512·61-s − 0.936·73-s + 7/9·81-s + 2.63·83-s + 3.15·103-s − 2.32·107-s + 2.25·113-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9545395945\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9545395945\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.985134151867115640523445142303, −8.866075227866857550836819381075, −8.265164950013336515653916636109, −7.70081597186566041226450183921, −7.60803725656428188240656341310, −7.24010372352042687131081395235, −6.79778644123537583222602567557, −6.46853478469199689626870616326, −5.94341082922476311366489680634, −5.58549645048709757072919856356, −5.11587721543301209089770674059, −4.73856801935362261965124357049, −4.34065754937014080256948385059, −3.72887269355348827472378854782, −3.39467125770590920931157172520, −3.23706577260673729092840060627, −1.99358704231421364497479188934, −1.79657262909454826687669165540, −1.61005578564380831285356289469, −0.30252267618718571088788787267,
0.30252267618718571088788787267, 1.61005578564380831285356289469, 1.79657262909454826687669165540, 1.99358704231421364497479188934, 3.23706577260673729092840060627, 3.39467125770590920931157172520, 3.72887269355348827472378854782, 4.34065754937014080256948385059, 4.73856801935362261965124357049, 5.11587721543301209089770674059, 5.58549645048709757072919856356, 5.94341082922476311366489680634, 6.46853478469199689626870616326, 6.79778644123537583222602567557, 7.24010372352042687131081395235, 7.60803725656428188240656341310, 7.70081597186566041226450183921, 8.265164950013336515653916636109, 8.866075227866857550836819381075, 8.985134151867115640523445142303