| L(s) = 1 | + 4·13-s − 6·17-s − 4·19-s + 8·25-s + 8·43-s + 24·47-s − 4·49-s + 12·53-s − 12·59-s + 20·67-s + 12·83-s + 12·89-s + 36·101-s + 8·103-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + ⋯ |
| L(s) = 1 | + 1.10·13-s − 1.45·17-s − 0.917·19-s + 8/5·25-s + 1.21·43-s + 3.50·47-s − 4/7·49-s + 1.64·53-s − 1.56·59-s + 2.44·67-s + 1.31·83-s + 1.27·89-s + 3.58·101-s + 0.788·103-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.721519613\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.721519613\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.116400790706771249493848835793, −8.878097428490303369445110910568, −8.508765309248683863561480396399, −8.055835476865620003128115235766, −7.46177454639380369926199832018, −7.32799486940337659590023635773, −6.76155695193498446862346203390, −6.32695470874408879761223608890, −6.20295362000038759166151697578, −5.73088939745887183890801585838, −5.01513058119373375797365995043, −4.92082541919087823250594624402, −4.09853978428856332639384659374, −4.09311962161096485151275963484, −3.52291534832183168968224316919, −2.87080088697272199263018281648, −2.23055697923406186104188172475, −2.16281667347883557240124183661, −1.06891215987451467032544499893, −0.65331502521990335622662412261,
0.65331502521990335622662412261, 1.06891215987451467032544499893, 2.16281667347883557240124183661, 2.23055697923406186104188172475, 2.87080088697272199263018281648, 3.52291534832183168968224316919, 4.09311962161096485151275963484, 4.09853978428856332639384659374, 4.92082541919087823250594624402, 5.01513058119373375797365995043, 5.73088939745887183890801585838, 6.20295362000038759166151697578, 6.32695470874408879761223608890, 6.76155695193498446862346203390, 7.32799486940337659590023635773, 7.46177454639380369926199832018, 8.055835476865620003128115235766, 8.508765309248683863561480396399, 8.878097428490303369445110910568, 9.116400790706771249493848835793