Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.254029669595$, $\pm0.745970330405$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{-77})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $288$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6246$ | $39012516$ | $243087380694$ | $1518080146652304$ | $9468276083403852726$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6250$ | $493040$ | $38975014$ | $3077056400$ | $243087305866$ | $19203908986160$ | $1517108654904574$ | $119851595982618320$ | $9468276084180858250$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=34 x^6+23 x^5+22 x^4+51 x^3+9 x^2+23 x+1$
- $y^2=23 x^6+69 x^5+66 x^4+74 x^3+27 x^2+69 x+3$
- $y^2=26 x^6+28 x^5+36 x^4+29 x^3+16 x^2+14 x+24$
- $y^2=78 x^6+5 x^5+29 x^4+8 x^3+48 x^2+42 x+72$
- $y^2=38 x^6+25 x^5+37 x^4+31 x^3+52 x^2+43 x+52$
- $y^2=35 x^6+75 x^5+32 x^4+14 x^3+77 x^2+50 x+77$
- $y^2=3 x^6+37 x^5+34 x^4+7 x^3+11 x^2+26 x+49$
- $y^2=9 x^6+32 x^5+23 x^4+21 x^3+33 x^2+78 x+68$
- $y^2=9 x^6+35 x^5+10 x^4+26 x^3+34 x^2+73 x+56$
- $y^2=27 x^6+26 x^5+30 x^4+78 x^3+23 x^2+61 x+10$
- $y^2=22 x^6+58 x^5+17 x^4+71 x^3+64 x^2+27 x+7$
- $y^2=66 x^6+16 x^5+51 x^4+55 x^3+34 x^2+2 x+21$
- $y^2=16 x^6+70 x^5+31 x^4+44 x^3+66 x^2+8 x+6$
- $y^2=48 x^6+52 x^5+14 x^4+53 x^3+40 x^2+24 x+18$
- $y^2=8 x^6+4 x^5+52 x^4+56 x^3+42 x^2+56 x+8$
- $y^2=24 x^6+12 x^5+77 x^4+10 x^3+47 x^2+10 x+24$
- $y^2=71 x^6+74 x^5+23 x^4+36 x^3+69 x^2+44 x+57$
- $y^2=55 x^6+64 x^5+69 x^4+29 x^3+49 x^2+53 x+13$
- $y^2=36 x^6+3 x^5+5 x^4+63 x^3+39 x^2+47 x+2$
- $y^2=29 x^6+9 x^5+15 x^4+31 x^3+38 x^2+62 x+6$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-77})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-77}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_ae | $4$ | (not in LMFDB) |
| 2.79.as_gg | $8$ | (not in LMFDB) |
| 2.79.s_gg | $8$ | (not in LMFDB) |