Properties

Label 2448.2.c.i.577.1
Level $2448$
Weight $2$
Character 2448.577
Analytic conductor $19.547$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,2,Mod(577,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,-6,0,-4,0,0,0,0,0,6,0,0,0,0, 0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(35)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 306)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 2448.577
Dual form 2448.2.c.i.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{5} +4.24264i q^{7} -2.82843i q^{11} +2.00000 q^{13} +(-3.00000 - 2.82843i) q^{17} -2.00000 q^{19} -7.07107i q^{23} +3.00000 q^{25} +7.07107i q^{29} -4.24264i q^{31} +6.00000 q^{35} -4.24264i q^{37} -5.65685i q^{41} +4.00000 q^{43} +12.0000 q^{47} -11.0000 q^{49} +6.00000 q^{53} -4.00000 q^{55} -6.00000 q^{59} +12.7279i q^{61} -2.82843i q^{65} +10.0000 q^{67} +1.41421i q^{71} +12.0000 q^{77} -12.7279i q^{79} +6.00000 q^{83} +(-4.00000 + 4.24264i) q^{85} +6.00000 q^{89} +8.48528i q^{91} +2.82843i q^{95} -8.48528i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{13} - 6 q^{17} - 4 q^{19} + 6 q^{25} + 12 q^{35} + 8 q^{43} + 24 q^{47} - 22 q^{49} + 12 q^{53} - 8 q^{55} - 12 q^{59} + 20 q^{67} + 24 q^{77} + 12 q^{83} - 8 q^{85} + 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.41421i 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 0 0
\(7\) 4.24264i 1.60357i 0.597614 + 0.801784i \(0.296115\pi\)
−0.597614 + 0.801784i \(0.703885\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 2.82843i −0.727607 0.685994i
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.07107i 1.47442i −0.675664 0.737210i \(-0.736143\pi\)
0.675664 0.737210i \(-0.263857\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.07107i 1.31306i 0.754298 + 0.656532i \(0.227977\pi\)
−0.754298 + 0.656532i \(0.772023\pi\)
\(30\) 0 0
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.00000 1.01419
\(36\) 0 0
\(37\) 4.24264i 0.697486i −0.937218 0.348743i \(-0.886609\pi\)
0.937218 0.348743i \(-0.113391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 12.7279i 1.62964i 0.579712 + 0.814822i \(0.303165\pi\)
−0.579712 + 0.814822i \(0.696835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.82843i 0.350823i
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.41421i 0.167836i 0.996473 + 0.0839181i \(0.0267434\pi\)
−0.996473 + 0.0839181i \(0.973257\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) 12.7279i 1.43200i −0.698099 0.716002i \(-0.745970\pi\)
0.698099 0.716002i \(-0.254030\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −4.00000 + 4.24264i −0.433861 + 0.460179i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 8.48528i 0.889499i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843i 0.290191i
\(96\) 0 0
\(97\) 8.48528i 0.861550i −0.902459 0.430775i \(-0.858240\pi\)
0.902459 0.430775i \(-0.141760\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82843i 0.273434i −0.990610 0.136717i \(-0.956345\pi\)
0.990610 0.136717i \(-0.0436552\pi\)
\(108\) 0 0
\(109\) 4.24264i 0.406371i −0.979140 0.203186i \(-0.934871\pi\)
0.979140 0.203186i \(-0.0651295\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.1421i 1.33038i −0.746674 0.665190i \(-0.768350\pi\)
0.746674 0.665190i \(-0.231650\pi\)
\(114\) 0 0
\(115\) −10.0000 −0.932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.0000 12.7279i 1.10004 1.16677i
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 8.48528i 0.735767i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 8.48528i 0.719712i −0.933008 0.359856i \(-0.882826\pi\)
0.933008 0.359856i \(-0.117174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.65685i 0.473050i
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 30.0000 2.36433
\(162\) 0 0
\(163\) 16.9706i 1.32924i 0.747183 + 0.664619i \(0.231406\pi\)
−0.747183 + 0.664619i \(0.768594\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.0416i 1.86040i −0.367057 0.930199i \(-0.619634\pi\)
0.367057 0.930199i \(-0.380366\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.89949i 0.752645i −0.926489 0.376322i \(-0.877189\pi\)
0.926489 0.376322i \(-0.122811\pi\)
\(174\) 0 0
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 21.2132i 1.57676i −0.615185 0.788382i \(-0.710919\pi\)
0.615185 0.788382i \(-0.289081\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) −8.00000 + 8.48528i −0.585018 + 0.620505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 25.4558i 1.83235i 0.400776 + 0.916176i \(0.368740\pi\)
−0.400776 + 0.916176i \(0.631260\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.89949i 0.705310i −0.935753 0.352655i \(-0.885279\pi\)
0.935753 0.352655i \(-0.114721\pi\)
\(198\) 0 0
\(199\) 4.24264i 0.300753i −0.988629 0.150376i \(-0.951951\pi\)
0.988629 0.150376i \(-0.0480486\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −30.0000 −2.10559
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.65685i 0.391293i
\(210\) 0 0
\(211\) 8.48528i 0.584151i −0.956395 0.292075i \(-0.905654\pi\)
0.956395 0.292075i \(-0.0943458\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.65685i 0.385794i
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 5.65685i −0.403604 0.380521i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.6274i 1.50183i 0.660396 + 0.750917i \(0.270388\pi\)
−0.660396 + 0.750917i \(0.729612\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.82843i 0.185296i 0.995699 + 0.0926482i \(0.0295332\pi\)
−0.995699 + 0.0926482i \(0.970467\pi\)
\(234\) 0 0
\(235\) 16.9706i 1.10704i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 8.48528i 0.546585i −0.961931 0.273293i \(-0.911887\pi\)
0.961931 0.273293i \(-0.0881127\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.5563i 0.993859i
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 8.48528i 0.521247i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.3848i 1.12094i −0.828175 0.560470i \(-0.810621\pi\)
0.828175 0.560470i \(-0.189379\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.48528i 0.511682i
\(276\) 0 0
\(277\) 21.2132i 1.27458i 0.770625 + 0.637289i \(0.219944\pi\)
−0.770625 + 0.637289i \(0.780056\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 8.48528i 0.504398i −0.967675 0.252199i \(-0.918846\pi\)
0.967675 0.252199i \(-0.0811537\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) 1.00000 + 16.9706i 0.0588235 + 0.998268i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 8.48528i 0.494032i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 14.1421i 0.817861i
\(300\) 0 0
\(301\) 16.9706i 0.978167i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.0000 1.03068
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.41421i 0.0801927i 0.999196 + 0.0400963i \(0.0127665\pi\)
−0.999196 + 0.0400963i \(0.987234\pi\)
\(312\) 0 0
\(313\) 25.4558i 1.43885i 0.694570 + 0.719425i \(0.255594\pi\)
−0.694570 + 0.719425i \(0.744406\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.5269i 1.82689i 0.406958 + 0.913447i \(0.366589\pi\)
−0.406958 + 0.913447i \(0.633411\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.00000 + 5.65685i 0.333849 + 0.314756i
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 50.9117i 2.80685i
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14.1421i 0.772667i
\(336\) 0 0
\(337\) 33.9411i 1.84889i −0.381314 0.924445i \(-0.624528\pi\)
0.381314 0.924445i \(-0.375472\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.6274i 1.21470i 0.794433 + 0.607352i \(0.207768\pi\)
−0.794433 + 0.607352i \(0.792232\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 2.00000 0.106149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 21.2132i 1.10732i 0.832743 + 0.553660i \(0.186769\pi\)
−0.832743 + 0.553660i \(0.813231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 25.4558i 1.32160i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.1421i 0.728357i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 16.9706i 0.864900i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −20.0000 + 21.2132i −1.01144 + 1.07280i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.0000 −0.905678
\(396\) 0 0
\(397\) 21.2132i 1.06466i −0.846537 0.532330i \(-0.821317\pi\)
0.846537 0.532330i \(-0.178683\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.3137i 0.564980i 0.959270 + 0.282490i \(0.0911603\pi\)
−0.959270 + 0.282490i \(0.908840\pi\)
\(402\) 0 0
\(403\) 8.48528i 0.422682i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) −16.0000 −0.791149 −0.395575 0.918434i \(-0.629455\pi\)
−0.395575 + 0.918434i \(0.629455\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) 8.48528i 0.416526i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.6274i 1.10542i 0.833373 + 0.552711i \(0.186407\pi\)
−0.833373 + 0.552711i \(0.813593\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.00000 8.48528i −0.436564 0.411597i
\(426\) 0 0
\(427\) −54.0000 −2.61324
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.41421i 0.0681203i 0.999420 + 0.0340601i \(0.0108438\pi\)
−0.999420 + 0.0340601i \(0.989156\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.1421i 0.676510i
\(438\) 0 0
\(439\) 4.24264i 0.202490i −0.994862 0.101245i \(-0.967717\pi\)
0.994862 0.101245i \(-0.0322826\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 8.48528i 0.402241i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.65685i 0.266963i −0.991051 0.133482i \(-0.957384\pi\)
0.991051 0.133482i \(-0.0426157\pi\)
\(450\) 0 0
\(451\) −16.0000 −0.753411
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) 42.4264i 1.95907i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.3137i 0.520205i
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.89949i 0.452319i 0.974090 + 0.226160i \(0.0726171\pi\)
−0.974090 + 0.226160i \(0.927383\pi\)
\(480\) 0 0
\(481\) 8.48528i 0.386896i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) 4.24264i 0.192252i 0.995369 + 0.0961262i \(0.0306452\pi\)
−0.995369 + 0.0961262i \(0.969355\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 20.0000 21.2132i 0.900755 0.955395i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) 8.48528i 0.379853i 0.981798 + 0.189927i \(0.0608250\pi\)
−0.981798 + 0.189927i \(0.939175\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.5563i 0.693623i −0.937935 0.346812i \(-0.887264\pi\)
0.937935 0.346812i \(-0.112736\pi\)
\(504\) 0 0
\(505\) 25.4558i 1.13277i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.65685i 0.249271i
\(516\) 0 0
\(517\) 33.9411i 1.49273i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.65685i 0.247831i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395452\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 + 12.7279i −0.522728 + 0.554437i
\(528\) 0 0
\(529\) −27.0000 −1.17391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.3137i 0.490051i
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.1127i 1.34012i
\(540\) 0 0
\(541\) 21.2132i 0.912027i 0.889973 + 0.456013i \(0.150723\pi\)
−0.889973 + 0.456013i \(0.849277\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 8.48528i 0.362804i 0.983409 + 0.181402i \(0.0580636\pi\)
−0.983409 + 0.181402i \(0.941936\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.1421i 0.602475i
\(552\) 0 0
\(553\) 54.0000 2.29631
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −30.0000 −1.26435 −0.632175 0.774826i \(-0.717837\pi\)
−0.632175 + 0.774826i \(0.717837\pi\)
\(564\) 0 0
\(565\) −20.0000 −0.841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 0 0
\(571\) 16.9706i 0.710196i −0.934829 0.355098i \(-0.884448\pi\)
0.934829 0.355098i \(-0.115552\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 21.2132i 0.884652i
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 25.4558i 1.05609i
\(582\) 0 0
\(583\) 16.9706i 0.702849i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 8.48528i 0.349630i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −18.0000 16.9706i −0.737928 0.695725i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 33.9411i 1.38449i 0.721664 + 0.692244i \(0.243378\pi\)
−0.721664 + 0.692244i \(0.756622\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.24264i 0.172488i
\(606\) 0 0
\(607\) 12.7279i 0.516610i −0.966063 0.258305i \(-0.916836\pi\)
0.966063 0.258305i \(-0.0831640\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.82843i 0.113868i 0.998378 + 0.0569341i \(0.0181325\pi\)
−0.998378 + 0.0569341i \(0.981868\pi\)
\(618\) 0 0
\(619\) 33.9411i 1.36421i 0.731255 + 0.682105i \(0.238935\pi\)
−0.731255 + 0.682105i \(0.761065\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25.4558i 1.01987i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 + 12.7279i −0.478471 + 0.507495i
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.2843i 1.12243i
\(636\) 0 0
\(637\) −22.0000 −0.871672
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.6274i 0.893729i −0.894602 0.446865i \(-0.852541\pi\)
0.894602 0.446865i \(-0.147459\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 16.9706i 0.666153i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.41421i 0.0553425i −0.999617 0.0276712i \(-0.991191\pi\)
0.999617 0.0276712i \(-0.00880915\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) 50.0000 1.93601
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.0000 1.38976
\(672\) 0 0
\(673\) 25.4558i 0.981251i −0.871371 0.490625i \(-0.836768\pi\)
0.871371 0.490625i \(-0.163232\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 49.4975i 1.90234i 0.308664 + 0.951171i \(0.400118\pi\)
−0.308664 + 0.951171i \(0.599882\pi\)
\(678\) 0 0
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.65685i 0.216454i 0.994126 + 0.108227i \(0.0345173\pi\)
−0.994126 + 0.108227i \(0.965483\pi\)
\(684\) 0 0
\(685\) 16.9706i 0.648412i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 25.4558i 0.968386i −0.874961 0.484193i \(-0.839113\pi\)
0.874961 0.484193i \(-0.160887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) −16.0000 + 16.9706i −0.606043 + 0.642806i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 76.3675i 2.87210i
\(708\) 0 0
\(709\) 12.7279i 0.478007i 0.971019 + 0.239004i \(0.0768208\pi\)
−0.971019 + 0.239004i \(0.923179\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −30.0000 −1.12351
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.5269i 1.21305i −0.795065 0.606525i \(-0.792563\pi\)
0.795065 0.606525i \(-0.207437\pi\)
\(720\) 0 0
\(721\) 16.9706i 0.632017i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 21.2132i 0.787839i
\(726\) 0 0
\(727\) −20.0000 −0.741759 −0.370879 0.928681i \(-0.620944\pi\)
−0.370879 + 0.928681i \(0.620944\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.0000 11.3137i −0.443836 0.418453i
\(732\) 0 0
\(733\) −10.0000 −0.369358 −0.184679 0.982799i \(-0.559125\pi\)
−0.184679 + 0.982799i \(0.559125\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 28.2843i 1.04186i
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.8701i 0.985767i 0.870095 + 0.492883i \(0.164057\pi\)
−0.870095 + 0.492883i \(0.835943\pi\)
\(744\) 0 0
\(745\) 25.4558i 0.932630i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 29.6985i 1.08371i 0.840471 + 0.541857i \(0.182278\pi\)
−0.840471 + 0.541857i \(0.817722\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.6274i 0.823496i
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) 18.0000 0.651644
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 12.7279i 0.457200i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.3137i 0.405356i
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.7990i 0.706656i
\(786\) 0 0
\(787\) 25.4558i 0.907403i 0.891154 + 0.453701i \(0.149897\pi\)
−0.891154 + 0.453701i \(0.850103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 60.0000 2.13335
\(792\) 0 0
\(793\) 25.4558i 0.903964i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) −36.0000 33.9411i −1.27359 1.20075i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 42.4264i 1.49533i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.2548i 1.59108i 0.605904 + 0.795538i \(0.292811\pi\)
−0.605904 + 0.795538i \(0.707189\pi\)
\(810\) 0 0
\(811\) 33.9411i 1.19183i 0.803046 + 0.595917i \(0.203211\pi\)
−0.803046 + 0.595917i \(0.796789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.5563i 0.542920i 0.962450 + 0.271460i \(0.0875065\pi\)
−0.962450 + 0.271460i \(0.912493\pi\)
\(822\) 0 0
\(823\) 4.24264i 0.147889i 0.997262 + 0.0739446i \(0.0235588\pi\)
−0.997262 + 0.0739446i \(0.976441\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.7990i 0.688478i −0.938882 0.344239i \(-0.888137\pi\)
0.938882 0.344239i \(-0.111863\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.0000 + 31.1127i 1.14338 + 1.07799i
\(834\) 0 0
\(835\) −34.0000 −1.17662
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.5563i 0.537065i −0.963271 0.268532i \(-0.913461\pi\)
0.963271 0.268532i \(-0.0865386\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.7279i 0.437854i
\(846\) 0 0
\(847\) 12.7279i 0.437337i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −30.0000 −1.02839
\(852\) 0 0
\(853\) 29.6985i 1.01686i −0.861104 0.508428i \(-0.830227\pi\)
0.861104 0.508428i \(-0.169773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.6274i 0.772938i −0.922302 0.386469i \(-0.873695\pi\)
0.922302 0.386469i \(-0.126305\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −14.0000 −0.476014
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −36.0000 −1.22122
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 48.0000 1.62270
\(876\) 0 0
\(877\) 12.7279i 0.429791i 0.976637 + 0.214896i \(0.0689412\pi\)
−0.976637 + 0.214896i \(0.931059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.1421i 0.476461i −0.971209 0.238230i \(-0.923433\pi\)
0.971209 0.238230i \(-0.0765673\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.41421i 0.0474846i 0.999718 + 0.0237423i \(0.00755813\pi\)
−0.999718 + 0.0237423i \(0.992442\pi\)
\(888\) 0 0
\(889\) 84.8528i 2.84587i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) 16.9706i 0.567263i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0000 1.00056
\(900\) 0 0
\(901\) −18.0000 16.9706i −0.599667 0.565371i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −30.0000 −0.997234
\(906\) 0 0
\(907\) 42.4264i 1.40875i −0.709830 0.704373i \(-0.751228\pi\)
0.709830 0.704373i \(-0.248772\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.5563i 0.515405i −0.966224 0.257702i \(-0.917035\pi\)
0.966224 0.257702i \(-0.0829654\pi\)
\(912\) 0 0
\(913\) 16.9706i 0.561644i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −60.0000 −1.98137
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.82843i 0.0930988i
\(924\) 0 0
\(925\) 12.7279i 0.418491i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22.6274i 0.742381i −0.928557 0.371191i \(-0.878950\pi\)
0.928557 0.371191i \(-0.121050\pi\)
\(930\) 0 0
\(931\) 22.0000 0.721021
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.0000 + 11.3137i 0.392442 + 0.369998i
\(936\) 0 0
\(937\) −4.00000 −0.130674 −0.0653372 0.997863i \(-0.520812\pi\)
−0.0653372 + 0.997863i \(0.520812\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.41421i 0.0461020i −0.999734 0.0230510i \(-0.992662\pi\)
0.999734 0.0230510i \(-0.00733802\pi\)
\(942\) 0 0
\(943\) −40.0000 −1.30258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 53.7401i 1.74632i −0.487435 0.873160i \(-0.662067\pi\)
0.487435 0.873160i \(-0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) 16.9706i 0.549155i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 50.9117i 1.64402i
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 36.0000 1.15888
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 36.0000 1.15411
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −60.0000 −1.91957 −0.959785 0.280736i \(-0.909421\pi\)
−0.959785 + 0.280736i \(0.909421\pi\)
\(978\) 0 0
\(979\) 16.9706i 0.542382i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.89949i 0.315745i 0.987460 + 0.157872i \(0.0504635\pi\)
−0.987460 + 0.157872i \(0.949537\pi\)
\(984\) 0 0
\(985\) −14.0000 −0.446077
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.2843i 0.899388i
\(990\) 0 0
\(991\) 12.7279i 0.404316i −0.979353 0.202158i \(-0.935205\pi\)
0.979353 0.202158i \(-0.0647954\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.00000 −0.190213
\(996\) 0 0
\(997\) 29.6985i 0.940560i 0.882517 + 0.470280i \(0.155847\pi\)
−0.882517 + 0.470280i \(0.844153\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.2.c.i.577.1 2
3.2 odd 2 2448.2.c.k.577.2 2
4.3 odd 2 306.2.b.c.271.1 yes 2
12.11 even 2 306.2.b.b.271.2 yes 2
17.16 even 2 inner 2448.2.c.i.577.2 2
51.50 odd 2 2448.2.c.k.577.1 2
68.47 odd 4 5202.2.a.t.1.2 2
68.55 odd 4 5202.2.a.t.1.1 2
68.67 odd 2 306.2.b.c.271.2 yes 2
204.47 even 4 5202.2.a.bd.1.1 2
204.191 even 4 5202.2.a.bd.1.2 2
204.203 even 2 306.2.b.b.271.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
306.2.b.b.271.1 2 204.203 even 2
306.2.b.b.271.2 yes 2 12.11 even 2
306.2.b.c.271.1 yes 2 4.3 odd 2
306.2.b.c.271.2 yes 2 68.67 odd 2
2448.2.c.i.577.1 2 1.1 even 1 trivial
2448.2.c.i.577.2 2 17.16 even 2 inner
2448.2.c.k.577.1 2 51.50 odd 2
2448.2.c.k.577.2 2 3.2 odd 2
5202.2.a.t.1.1 2 68.55 odd 4
5202.2.a.t.1.2 2 68.47 odd 4
5202.2.a.bd.1.1 2 204.47 even 4
5202.2.a.bd.1.2 2 204.191 even 4